404
Views
34
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template

, ORCID Icon, , , , , , & show all
Pages 2268-2283 | Received 14 Feb 2017, Accepted 09 May 2017, Published online: 19 May 2017

References

  • D. Bhattacharyya, S. Singh, and N. Satnalika, Nanotechnology, big things from a tiny world: A review, Sci. Technol. 2 (2009), pp. 29–38.
  • C. Binns, Introduction to Nanoscience and Nanotechnology, Wiley, Hoboken, NJ, 2010.10.1002/9780470618837
  • F. Sanchez and K. Sobolev, Nanotechnology in concrete – A review, Constr. Build. Mater. 24 (2010), pp. 2060–2071.10.1016/j.conbuildmat.2010.03.014
  • I. Lisiecki and M.P. Pileni, Synthesis of copper metallic clusters using reverse micelles as microreactors, J. Am. Chem. Soc. 115 (1993), pp. 3887–3896.10.1021/ja00063a006
  • M.-Y. Yen, C.-W. Chiu, and C.-H. Hsia, Synthesis of cable-like copper nanowires, Adv. Mater. 15 (2003), pp. 235–237.10.1002/adma.200390054
  • K.B. Lee, J.H. Seo, and J.P. Ahn, A simple route for the synthesis of copper nanowires, Met. Mater. Int. 18 (2012), pp. 727–730.10.1007/s12540-012-4017-8
  • Y.-F. Huang, H.-S. Shih, and C.-W. Lin, Morphology control of Cu crystals on modified conjugated polymer surfaces, Cryst. Growth Des. 12 (2012), pp. 1778–1784.10.1021/cg201200r
  • H. Prunier, C. Ricolleau, and J. Nelayah, Original anisotropic growth mode of copper nanorods by vapor phase deposition, Cryst. Growth Des. 14 (2014), pp. 6350–6356.10.1021/cg5010825
  • A. Filankembo, S. Giorgio, and I. Lisiecki, Is the anion the major parameter in the shape control of nanocrystals?, J. Phys. Chem. B 107 (2003), pp. 7492–7500.10.1021/jp022282q
  • L. Gou and C.J. Murphy, Solution-phase synthesis of Cu2O nanocubes, Nano Lett. 3 (2003), pp. 231–234.10.1021/nl0258776
  • L. Wang, X. Chen, and J. Zhan, Synthesis of gold nano- and microplates in hexagonal liquid crystals, J. Phys. Chem. B (2005), pp. 3189–3194.10.1021/jp0449152
  • J.-M. Roussel and M. Gailhanou, Stability of a screw dislocation in a 〈0 1 1〉 copper nanowire, Phys. Rev. Lett. 115 (2015), p. 75503.10.1103/PhysRevLett.115.075503
  • P. He, X. Shen, and H. Gao, Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption, J. Colloid Interface Sci. 284 (2005), pp. 510–515.10.1016/j.jcis.2004.10.060
  • R. Qiu, H.G. Cha, and H.B. Noh, Preparation of dendritic copper nanostructures and their characterization for electroreduction, J. Phys. Chem. C 113 (2009), pp. 15891–15896.10.1021/jp904222b
  • X. Zhang, G. Wang, and X. Liu, Copper dendrites: Synthesis, mechanism discussion, and application in determination of l -tyrosine, Cryst. Growth Des. 8 (2008), pp. 1430–1434.10.1021/cg7011028
  • Y. Li, Z.-Y. Fu, and B.-L. Su, Hierarchically structured porous materials for energy conversion and storage, Adv. Funct. Mater. 22 (2012), pp. 4634–4667.10.1002/adfm.v22.22
  • Z. He, J. He, and Z. Zhang, Selective growth of metallic nanostructures on microstructured copper substrate in solution, CrystEngComm. 17 (2015), pp. 7262–7269.10.1039/C5CE01093D
  • B.J. Plowman, L.A. Jones, and S.K. Bhargava, Building with bubbles: The formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition, Chem. Commun. 51 (2015), pp. 4331–4346.10.1039/C4CC06638C
  • M.H. Rashid and T.K. Mandal, Synthesis and catalytic application of nanostructured silver dendrites, J. Phys. Chem. C 111 (2007), pp. 16750–16760.10.1021/jp074963x
  • Y. Fei Chan, C. Xing Zhang, and Z. Long Wu, Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering, Appl. Phys. Lett. 102 (2013), p. 183118.10.1063/1.4803937
  • L. He, M. Lin, and H. Li, Surface-enhanced Raman spectroscopy coupled with dendritic silver nanosubstrate for detection of restricted antibiotics, J. Raman Spectrosc. 41 (2009), pp. 739–744.
  • X. Hong, G. Wang, and Y. Wang, Controllable electrochemical synthesis of silver dendritic nanostructures and their SERS properties, Chinese J. Chem. Phys. 23 (2010), pp. 596–602.10.1088/1674-0068/23/05/596-602
  • M. Muniz-Miranda, C. Gellini, and E. Giorgetti, Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation, J. Phys. Chem. C 115 (2011), pp. 5021–5027.10.1021/jp1086027
  • Q. Shao, R. Que, and M. Shao, Copper nanoparticles grafted on a silicon wafer and their excellent surface-enhanced Raman scattering, Adv. Funct. Mater. 22 (2012), pp. 2067–2070.10.1002/adfm.201102943
  • P. Zhang, Y. Sui, and C. Wang, A one-step green route to synthesize copper nanocrystals and their applications in catalysis and surface enhanced Raman scattering, Nanoscale 6 (2014), p. 5343.10.1039/c4nr00412d
  • R.C. Wang and C.H. Li, Cu, Cu-Cu2O core-shell, and hollow Cu2O nanodendrites: Structural evolution and reverse surface-enhanced Raman scattering, Acta Mater. 59 (2011), pp. 822–829.10.1016/j.actamat.2010.10.029
  • H. Dong, Y. Wang, and F. Tao, Electrochemical fabrication of shape-controlled copper hierarchical structures assisted by surfactants, J. Nanomater. 2012 (2012), pp. 1–6.
  • J.-H. Han, E. Khoo, and P. Bai, Over-limiting current and control of dendritic growth by surface conduction in nanopores, Sci. Rep. 4 (2014), pp. 1–8.
  • N.D. Nikolić, K.I. Popov, and L.J. Pavlović, Morphologies of copper deposits obtained by the electrodeposition at high overpotentials, Surf. Coat. Technol. 201 (2006), pp. 560–566.10.1016/j.surfcoat.2005.12.004
  • A.V. Trukhanov, S.S. Grabchikov, and A.N. Vasiliev, Specific features of formation and growth mechanism of multilayered quasi-one-dimensional (Co-Ni-Fe)/Cu systems in pores of anodic alumina matrices, Crystallogr. Rep. 59 (2014), pp. 744–748.10.1134/S1063774514050216
  • S. Djokić, N. Nikolić, and P. Živković, Electrodeposition and electroless deposition of metallic powders: A comparison, Nano 33 (2011), pp. 7–31.
  • H.H. Nersisyan, Y.-J. Lee, and S.-H. Joo, Iron-assisted electroless deposition reaction for synthesizing copper and silver dendritic structures, CrystEngComm 17 (2015), pp. 7535–7542.10.1039/C5CE01367D
  • C.K. Senthil Kumaran, S. Agilan, and D. Velauthapillai, Preparation and characterization of copper dendrite like structure by chemical method, Adv. Mater. Res. 678 (2013), pp. 27–31.10.4028/www.scientific.net/AMR.678
  • D.V. Ravi Kumar, K. Woo, and J. Moon, Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications, Nanoscale 7 (2015), pp. 17195–17210.10.1039/C5NR05138J
  • N. Tian, Z.-Y. Zhou, and S.-G. Sun, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science 316 (2007), pp. 732–735.10.1126/science.1140484
  • I. Gurrappa and L. Binder, Electrodeposition of nanostructured coatings and their characterization – A review, Sci. Technol. Adv. Mater. 9 (2008), p. 043001.10.1088/1468-6996/9/4/043001
  • C.R. Martin, Nanomaterials: A membrane-based synthetic approach, Science 266 (1994), pp. 1961–1966.10.1126/science.266.5193.1961
  • P. Guo, C.R. Martin, and Y. Zhao, General method for producing organic nanoparticles using nanoporous membranes, Nano Lett. 10 (2010), pp. 2202–2206.10.1021/nl101057d
  • A. Kozlovskiy, K. Borgekov, and M. Zdorovets, Application of ion-track membranes in processes of direct and reverse osmosis, Proc. Natl. Acad. Sci. Belarus. Phys. Ser. 1 (2017), pp. 45–51.
  • D. Natelson, Nanofabrication. Best of both worlds, Nat. Mater. 5 (2006), pp. 853–854.10.1038/nmat1769
  • S.Y. Chou, P.R. Krauss, and P.J. Renstrom, Imprint lithography with 25-nanometer resolution, Science 272 (1996), pp. 85–87.10.1126/science.272.5258.85
  • L. Boarino, S. Borini, and G. Amato, Electrical properties of mesoporous silicon: From a surface effect to Coulomb blockade and more, J. Electrochem. Soc. 156 (2009), pp. K223–K226.10.1149/1.3232202
  • A. Cultrera, L. Boarino, and G. Amato, Band-gap states in unfilled mesoporous nc-TiO2: Measurement protocol for electrical characterization, J. Phys. D. Appl. Phys. 47 (2014), pp. 15102–1–15102–8.
  • T. Ozel, G.R. Bourret, and C.A. Mirkin, Coaxial lithography, Nat. Nanotechnol. (2015), pp. 1–6.
  • R. Garcia, A.W. Knoll, and E. Riedo, Advanced scanning probe lithography, Nat. Nanotechnol. 9 (2014), pp. 577–587.10.1038/nnano.2014.157
  • T.C. Bailey, S.C. Johnson, and S.V. Sreenivasan, Step and flash imprint lithography: An efficient nanoscale printing technology, J. Photopolym. Sci. Technol. 15 (2002), pp. 481–486.10.2494/photopolymer.15.481
  • S.E. Demyanov, E.Y. Kaniukov, and A.V. Petrov, On the morphology of Si/SiO2/Ni nanostructures with swift heavy ion tracks in silicon oxide, J. Surf. Investig. X-ray, Synchrotron Neutron Tech. 8 (2014), pp. 805–813.10.1134/S1027451014040326
  • E. Kaniukov, A. Kozlovsky, and D. Shlimas, Tunable synthesis of copper nanotubes, IOP Conf. Ser. Mater. Sci. Eng 110 (2016), p. 012013.10.1088/1757-899X/110/1/012013
  • A.L. Kozlovskiy, D.I. Shlimas, and A.E. Shumskaya, Influence of electrodeposition parameters on structural and morphological features of Ni nanotubes, Phys. Met. Metallogr. 118 (2017), pp. 164–169.10.1134/S0031918X17020065
  • N.A. Kalanda, G.G. Gorokh, and M.V. Yarmolich, Magnetic and magnetoresistive properties of Al2O3–Sr2FeMoO6–δ–Al2O3 nanoheterostructures, Phys. Solid State 58 (2016), pp. 351–359.10.1134/S1063783416020128
  • S.E. Demyanov, E.Y. Kaniukov, and A.V. Petrov, Nanostructures of Si/SiO2/metal systems with tracks of fast heavy ions, Bull. Russ. Acad. Sci. Phys. 72 (2008), pp. 1193–1195.10.3103/S1062873808090050
  • E.Y. Kaniukov, J. Ustarroz, and D.V. Yakimchuk, Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology, Nanotechnology 27 (2016), p. 115305.10.1088/0957-4484/27/11/115305
  • E.H. Borneman, R.F. Schwarz, and J.J. Stickler, Rectification properties of metal semiconductor contacts, J. Appl. Phys. 26 (1955), pp. 1021–1028.10.1063/1.1722127
  • G. Oskam, J.G. Long, and A. Natarajan, Electrochemical deposition of metals onto silicon, J. Phys. D. Appl. Phys. 31 (1999), pp. 1927–1949.
  • A.A. Pasa and W. Schwarzacher, Electrodeposition of thin films and multilayers on silicon, Phys. Status Solidi Appl. Res. 173 (1999), pp. 73–84.10.1002/(ISSN)1521-396X
  • A. Eftekhari, Improving Cu metallization of Si by electrodeposition under centrifugal fields, Microelectron. Eng. 69 (2003), pp. 17–25.10.1016/S0167-9317(03)00224-7
  • M.R. Khelladi, L. Mentar, and A. Azizi, Electrochemical nucleation and growth of copper deposition onto FTO and n-Si(100) electrodes, Mater. Chem. Phys. 115 (2009), pp. 385–390.10.1016/j.matchemphys.2008.12.017
  • C. Ji, G. Oskam, and P.C. Searson, Electrochemical nucleation and growth of copper on Si(111), Surf. Sci. 492 (2001), pp. 115–124.10.1016/S0039-6028(01)01410-8
  • R. Krumm, B. Guel, and C. Schmitz, Nucleation and growth in electrodeposition of metals on n-Si(111), Electrochim. Acta 45 (2000), pp. 3255–3262.10.1016/S0013-4686(00)00418-7
  • H. Gerischer, The impact of semiconductors on the concepts of electrochemistry, Electrochim. Acta 35 (1990), pp. 1677–1699.10.1016/0013-4686(90)87067-C
  • A. Reitzle, F.U. Renner, and T.L. Lee, Electrochemical growth of copper on well-defined n-Si(111): H surfaces, Surf. Sci. 576 (2005), pp. 19–28.10.1016/j.susc.2004.11.038
  • K. Márquez, G. Staikov, and J. Schultze, Silver deposition on silicon and glassy carbon. A comparative study in cyanide medium, Electrochim. Acta 48 (2003), pp. 875–882.10.1016/S0013-4686(02)00781-8
  • G. Oskam and P.C. Searson, Electrochemical nucleation and growth of gold on silicon, Surf. Sci. 446 (2000), pp. 103–111.10.1016/S0039-6028(99)01113-9
  • Y.A. Ivanova, D.K. Ivanou, and A.K. Fedotov, Electrochemical deposition of Ni and Cu onto monocrystalline n-Si(100) wafers and into nanopores in Si/SiO2 template, J. Mater. Sci. 42 (2007), pp. 9163–9169.10.1007/s10853-007-1926-x
  • V. Sivakov, E.Y. Kaniukov, and A.V. Petrov, Silver nanostructures formation in porous Si/SiO2 matrix, J. Cryst. Growth 400 (2014), pp. 21–26.10.1016/j.jcrysgro.2014.04.024
  • I. Haas, S. Shanmugam, and A. Gedanken, Synthesis of copper dendrite nanostructures by a sonoelectrochemical method, Chem. Eur. J. 14 (2008), pp. 4696–4703.10.1002/(ISSN)1521-3765
  • E.C. Le Ru, E.J. Blackie, and M. Meyer, Surface enhanced Raman scattering enhancement factors:  A comprehensive study, J. Phys. Chem. C 111 (2007), pp. 13794–13803.10.1021/jp0687908
  • R. Zhang, W. Lin, and K. Lawrence, Highly reliable, low cost, isotropically conductive adhesives filled with Ag-coated Cu flakes for electronic packaging applications, Int. J. Adhes. Adhes. 30 (2010), pp. 403–407.10.1016/j.ijadhadh.2010.01.004
  • Y. Chen, Q. Xu, and B. Hu, Unconventional synthesis of Cu–Au dendritic nanowires with enhanced electrochemical activity, RSC Adv. 6 (2016), pp. 2464–2469.10.1039/C5RA23362C
  • J.-P. Lee, D. Chen, and X. Li, Well-organized raspberry-like Ag-Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering, Nanoscale 5 (2013), pp. 11620–11624.10.1039/c3nr03363e

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.