253
Views
11
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Accelerated quasicontinuum: a practical perspective on hyper-QC with application to nanoindentation

&
Pages 2284-2316 | Received 04 Aug 2016, Accepted 08 May 2017, Published online: 07 Jun 2017

References

  • E.B. Tadmor and R.E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University Press, Cambridge, 2011.
  • E.B. Tadmor, M. Ortiz, and R. Phillips, Quasicontinuum analysis of defects in solids, Philos. Mag. A 73 (1996), pp. 1529–1563.
  • V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz, An adaptive finite element approach to atomic-scale mechanics: The quasicontinuum method, J. Mech. Phys. Solids 47 (1999), pp. 611–642.
  • W.A. Curtin and R.E. Miller, Atomistic/continuum coupling methods in multi-scale materials modeling, Model. Simul. Mater. Sci. Eng. 11 (2003), pp. R33–R68.
  • R.E. Miller and E.B. Tadmor, A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods, Model. Simul. Mater. Sci. Eng. 17 (2009), p. 053001.
  • V. Shenoy, V. Shenoy, and R. Phillips, Finite temperature quasicontinuum methods, in Multiscale Modelling of Materials, Materials Research Society Symposium Proceedings, Vol. 538, T. Diaz de la Rubia, E. Kaxiras, V. Bulatov, N.M. Ghoniem, and R. Phillips, eds., Materials Research Society, Warrendale, PA, 1999, pp. 465–471.
  • L.M. Dupuy, E.B. Tadmor, R.E. Miller, and R. Phillips, Finite temperature quasicontinuum: Molecular dynamics without all the atoms, Phys. Rev. Lett. 95 (2005), p. 060202.
  • E.B. Tadmor, F. Legoll, W.K. Kim, L.M. Dupuy, and R.E. Miller, Finite-temperature quasi-continuum, Appl. Mech. Rev. 65 (2013), p. 010803.
  • J. Knap and M. Ortiz, An analysis of the quasicontinuum method, J. Mech. Phys. Solids 49(9) (2001), pp. 1899–1923.
  • Y. Kulkarni, J. Knap, and M. Ortiz, A variational approach to coarse graining of equilibrium and non-equilibrium atomistic description at finite temperature, J. Mech. Phys. Solids 56(4) (2008), pp. 1417–1449.
  • M.P. Ariza, I. Romero, M. Ponga, and M. Ortiz, Hotqc simulation of nanovoid growth under tension in copper, Int. J. Frac. 174(1) (2012), pp. 75–85.
  • M. Ponga, I. Romero, M. Ortiz, and M.P. Ariza, Finite temperature nanovoids evolution in fcc metals using quasicontinuum method, Key Eng. Mater. 488–489 (2012), pp. 387–390, cited by 4.
  • G. Venturini, K. Wang, I. Romero, M.P. Ariza, and M. Ortiz, Atomistic long-term simulation of heat and mass transport, J. Mech. Phys. Solids 73 (2014), pp. 242–268.
  • K.G. Wang, M. Ortiz, and M.P. Ariza, Long-term atomistic simulation of hydrogen diffusion in metals, Int. J. Hyd. Ener. 40(15) (2015), pp. 5353–5358.
  • A.F. Voter, A method for accelerating the molecular dynamics simulation of infrequent events, J. Chem. Phys. 106 (1997), pp. 4665–4667.
  • A.F. Voter, Parallel replica method for dynamics of infrequent events, Phys. Rev. B 57 (1998), pp. 13985–13988.
  • M.R. Sørensen and A.F. Voter, Temperature-accelerated dynamics for simulation of infrequent events, J. Chem. Phys. 112 (2000), pp. 9599–9606.
  • A. Laio and M. Parrinello, Escaping free-energy minima, Proc. Natl. Acad. Sci. U.S.A. 99 (2002), pp. 12562–12566.
  • J. Li, S. Sarkar, W.T. Cox, T.J. Lenosky, E. Bitzek, and Y. Wang, Diffusive molecular dynamics and its application to nanoindentation and sintering, Phys. Rev. B 84 (2011), p. 054103.
  • W.K. Kim and M.L. Falk, Accelerated molecular dynamics simulation of low-velocity frictional sliding, Model. Simul. Mater. Sci. Eng. 18 (2010), p. 034003.
  • W.K. Kim and M.L. Falk, Role of intermediate states in low-velocity friction between amorphous surfaces, Phys. Rev. B 84 (2011), p. 165422.
  • W.K. Kim, M. Luskin, D. Perez, A.F. Voter, and E.B. Tadmor, Hyper-QC: An accelerated finite-temperature quasicontinuum method using hyperdynamics, J. Mech. Phys. Solids 63 (2014), pp. 94–112.
  • R. Komanduri, N. Chandrasekaran, and L.M. Raff, MD simulation of indentation and scratching of single crystal aluminum, Wear 240 (2000), pp. 113–143.
  • D. Christopher, R. Smith, and A. Richter, Atomistic modelling of nanoindentation in iron and silver, Nanotechnology 12 (2001), pp. 372–383.
  • Y.M. Lee, J.Y. Park, S.Y. Kim, S. Jun, and S. Im, Atomistic simulations of incipient plasticity under A1(1\,1\,1) nanoindentation, Mech. Mater. 37 (2005), pp. 1035–1048.
  • D. Saraev and R.E. Miller, Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings, Acta Mater. 54 (2006), pp. 33–45.
  • E.K. Njeim and D.F. Bahr, Atomistic simulations of nanoindentation in the presence of vacancies, Scr. Mater. 62 (2010), pp. 598–601.
  • E.B. Tadmor, R. Miller, R. Phillips, and M. Ortiz, Nanoindentation and incipient plasticity, J. Mater. Res. 14 (1999), pp. 2233–2250.
  • G.S. Smith, E.B. Tadmor, and E. Kaxiras, Multiscale simulation of loading and electrical resistance in silicon nanoindentation, Phys. Rev. Lett. 84 (2000), pp. 1260–1263.
  • G.S. Smith, E.B. Tadmor, N. Bernstein, and E. Kaxiras, Multiscale simulations of silicon nanoindentation, Acta Mater. 49 (2001), pp. 4089–4101.
  • J. Knap and M. Ortiz, An analysis of the quasicontinuum method, J. Mech. Phys. Solids 49 (2001), pp. 1899–1923.
  • J. Mei, J. Li, Y. Ni, and H. Wang, Multiscale simulation of indentation, retraction and fracture processes of nanocontact, Nanoscale Res. Lett. 5 (2010), pp. 692–700.
  • K. Xiong, X. Liu, and J. Gu, Multiscale modeling of nanoindentation-induced instability in FeNi3 crystal, Comput. Mater. Sci. 102 (2015), pp. 140–150.
  • J. Ma, Y. Liu, H. Lu, and R. Komanduri, Multiscale simulation of nanoindentation using the generalized interpolation material point (GIMP) method, dislocation dynamics (DD) and molecular dynamics (MD), CMES-Comp. Model. Eng. 16(1) (2006), pp. 41–55.
  • C.-T. Wang, S.-R. Jian, J.S.-C. Jang, Y.-S. Lai, and P.-F. Yang, Multiscale simulation of nanoindentation on Ni (1\,0\,0) thin film, Appl. Surf. Sci. 255 (2008), pp. 3240–3250.
  • G. Ren, D. Zhang, and X. Gong, Dynamical multiscale simulation of nanoindentation, Phys. Lett. A 375(6) (2011), pp. 953–956.
  • R. LeSar, R. Najafabadi, and D. Srolovitz, Finite-temperature defect properties from free-energy minimization, Phys. Rev. Lett. 63 (1989), pp. 624–627.
  • R.E. Miller and E.B. Tadmor, The quasicontinuum method: Overview, applications and current directions, J. Comput.-Aided Mater. Des. 9 (2002), pp. 203–239.
  • M. Dobson and M. Luskin, An analysis of the effect of ghost force oscillation on the quasicontinuum error, Math. Model. Numer. Anal. (ESAIM:M2AN) 43 (2008), pp. 591–604.
  • R.A. Miron and K.A. Fichthorn, Accelerated molecular dynamics with the bond-boost method, J. Chem. Phys. 119 (2003), pp. 6210–6216.
  • W.K. Kim and E.B. Tadmor, Entropically stabilized dislocations, Phys. Rev. Lett. 112(10) (2014), p. 105501.
  • W.K. Kim and M.L. Falk, A practical perspective on the implementation of hyperdynamics for accelerated simulation, J. Chem. Phys. 140 (2014), p. 044107.
  • M. Souaille and B. Roux, Extension to the weighted histogram analysis method: Combining umbrella sampling with free energy calculations, Comput. Phys. Commun. 135 (2001), pp. 40–57.
  • S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1984), pp. 511–519.
  • T. Shardlow, Splitting for dissipative particle dynamics, SIAM J. Sci. Comput. 24 (2003), pp. 1267–1282.
  • C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B 58 (1998), pp. 11085–11088.
  • X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited cofe/nife multilayers, Phys. Rev. B 69 (2004), p. 144113.
  • X.W. Zhou, Eam alloy potential for sixteen metal elements and their alloys (2015). Available at https://openkim.org/cite/MO_110256178378_001.
  • R.S. Elliott, EAM model driver with Hermite cubic spline interpolation (2015). Available at https://openkim.org/cite/MD_120291908751_001.
  • E.B. Tadmor, R.S. Elliott, J.P. Sethna, R.E. Miller, and C.A. Becker, The potential of atomistic simulations and the knowledgebase of Interatomic Models, JOM 63(7) (2011), pp. 17–17.
  • L. Chang and L. Zhang, Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in: A nanoindentation study under ultra-low loads, Mater. Sci. Eng. A 506(1–2) (2009), pp. 125–129.
  • L. Zhang and A. Basak, Quantitative prediction of phase transformations in silicon during nanoindentation, Philos. Mag. Lett. 93(8) (2013), pp. 448–456.
  • A.-R. Alao and L. Yin, Loading rate effect on the mechanical behavior of zirconia in nanoindentation, Mater. Sci. Eng. A 619 (2014), pp. 247–255.
  • G.A. Tomlinson, A molecular theory of friction, Philos. Mag. 7 (1929), pp. 905–939.
  • E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, Velocity dependence of atomic friction, Phys. Rev. Lett. 84 (2000), pp. 1172–1175.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.