185
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Diffraction peak profiles of surface relaxed spherical nanocrystals

&
Pages 2317-2346 | Received 07 Mar 2017, Accepted 11 May 2017, Published online: 15 Jun 2017

References

  • M.L. Cohen, Theory of Surface Reconstruction, in The Structure of Surfaces, M.A. Van Hove and S.Y. Tong, eds., Springer, Berlin Heidelberg, Berlin, 1985, pp. 4–11.
  • K. Oura, V. Lifshits, A. Saranin, A. Zotov, and M. Katayama, Surface Science: An Introduction, 1st ed., Advanced Texts in Physics. Springer-Verlag, Berlin Heidelberg, 2003.
  • C. Mays, J. Vermaak, and D. Kuhlmann-Wilsdorf, On surface stress and surface tension. II. Determination of the surface stress of gold, Surf. Sci. 12 (1968), pp. 134–140, cited By 247.
  • J. Vermaak and D. Kuhlmann-Wilsdorf, Measurement of the average surface stress of gold as a function of temperature in the temperature range 50 – 985°, J. Phys. Chem. 72 (1968), pp. 4150–4154, cited By 48.
  • A.C. Nunes and D. Lin, Effects of surface relaxation on powder diffraction patterns of very fine particles, J. Appl. Crystallogr. 28 (1995), pp. 274–278.
  • K. Ishikawa and T. Uemori, Surface relaxation in ferroelectric perovskites, Phys. Rev. B 60 (1999), pp. 11841–11845.
  • W.J. Huang, R. Sun, J. Tao, L.D. Menard, R.G. Nuzzo, and J.M. Zuo, Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction, Nat. Mater 7 (2008), pp. 308–313. doi:10.1038/nmat2132.
  • K.R. Beyerlein, R.L. Snyder, M. Li, and P. Scardi, Simulation and modeling of nanoparticle surface strain, J. Nanosci. Nanotech 12 (2012), pp. 8554–8560.
  • L. Gelisio and P. Scardi, On the modeling of the diffraction pattern from metal nanocrystals, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 45 (2014), pp. 4786–4795, cited By 4.
  • M. Leoni and P. Scardi, Grain Surface Relaxation Effects in Powder Diffraction, in Diffraction Analysis of the Microstructure of Materials, E.J. Mittemeijer and P. Scardi, eds., Springer, Berlin Heidelberg, Berlin, 2004, pp. 413–454.
  • P. Scardi, Microstructural Properties: Lattice Defects and Domain Size Effects, in Powder Diffraction: Theory and Practice, R. Dinnebier and S. Billinge, eds., Royal Society of Chemistry, Cambridge, 2008, pp. 376–413.
  • J.F. Banfield and H. Zhang, Nanoparticles in the Environment, in Nanoparticles and the Environment, J.F. Banfield and A. Navrotsky, eds., Mineralogical Society of America, Washington, DC, 2001, pp. 1–58.
  • H. Wasserman and J. Vermaak, On the determination of a lattice contraction in very small silver particles, Surf. Sci. 22 (1970), pp. 164–172, cited By 148.
  • H. Wasserman and J. Vermaak, On the determination of the surface stress of copper and platinum, Surf. Sci. 32 (1972), pp. 168–174, cited By 129.
  • J. Woltersdorf, A. Nepijko, and E. Pippel, Dependence of lattice parameters of small particles on the size of the nuclei, Sur. Sci. 106 (1981), pp. 64–69, cited By 87.
  • S. Onodera, Lattice parameters of fine copper and silver particles, J. Phys. Soc. Jpn 61 (1992), pp. 2190–2193, cited By 7.
  • J. Sheng, U. Welzel, and E. Mittemeijer, Nonmonotonic crystallite-size dependence of the lattice parameter of nanocrystalline nickel, Appl. Phys. Lett. 97 (2010), p. 153109, cited By 15.
  • M.Y. Gamarnik, Change of lattice parameters in highly disperse nickel powders, Shys. Status solid (b) 168 (1991), pp. 389–395.
  • X. Liu, H. Zhang, K. Lu, and Z. Hu, The lattice expansion in nanometre-sized Ni polycrystals, J. Phys. Condens. Matt. 6 (1994), pp. L497–L502, cited By 67.
  • Z. Wei, T. Xia, J. Ma, W. Feng, J. Dai, Q. Wang, and P. Yan, Investigation of the lattice expansion for Ni nanoparticles, Mater. Charact. 58 (2007), pp. 1019–1024, cited By 30.
  • P. Zimmer and R. Birringer, Measuring the interface stress of nanocrystalline iron, Appl. Phys. Lett. 92 (2008), p. 081912, cited By 4.
  • G. Rane, U. Welzel, S. Meka, and E. Mittemeijer, Non-monotonic lattice parameter variation with crystallite size in nanocrystalline solids, Acta Mater. 61 (2013), pp. 4524–4533, cited By 17.
  • X. Yu, X. Liu, K. Zhang, and Z. Hu, The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique, J. Phys. Condens. Matt. 11 (1999), pp. 937–944, cited By 55.
  • A. Stoneham, Comment on ‘The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique’, J. Phys. Condens. Matter 11 (1999), pp. 8351–8352, cited By 14.
  • C. Sun, Comment on ‘The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique’, J. Phys. Condens. Matter 11 (1999), pp. 4801–4803, cited By 35.
  • K. Nanda, S. Behera, and S. Sahu, Comment on ‘The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique’, J. Phys. Condens. Matt. 13 (2001), pp. 2861–2864, cited By 26.
  • M. Ahmad and S. Bhattacharya, Size effect on the lattice parameters of nanocrystalline anatase, Appl. Phys. Lett. 95 (2009), cited By 26.
  • S. Tsunekawa, S. Ito, and Y. Kawazoe, Surface structures of cerium oxide nanocrystalline particles from the size dependence of the lattice parameters, Appl. Phys. Lett. 85 (2004), pp. 3845–3847, cited By 46.
  • L. Wu, H. Wiesmann, A. Moodenbaugh, R. Klie, Y. Zhu, D. Welch, and M. Suenaga, Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size, Phys. Rev. B - Condens. Matter Mater. Phys. 69 (2004), pp. 1254151–1254159, cited By 193.
  • S. Tsunekawa, S. Ito, T. Mori, K. Ishikawa, Z.Q. Li, and Y. Kawazoe, Critical size and anomalous lattice expansion in nanocrystalline BaTiO3 particles, Phys. Rev. B - Condens. Matter Mater. Phys. 62 (2000), pp. 3065–3070, cited By 106.
  • X. Wu, D. Wu, and X. Liu, Negative pressure effects in SrTiO3 nanoparticles investigated by raman spectroscopy, Solid State Commun. 145 (2008), pp. 255–258.
  • E. Akdogan, C. Rawn, W. Porter, E. Payzant, and A. Safari, Size effects in PbTiO3 nanocrystals: Effect of particle size on spontaneous polarization and strains, J. Appl. Phys. 97 (2005), p. 084305, cited By 44.
  • A. Cimino, P. Porta, and M. Valigi, Dependence of the lattice parameter of magnesium oxide on crystallite size, J. Amer. Ceram. Soc. 49 (1966), pp. 152–156, cited By 49.
  • A. Kumar and J. Kumar, On the synthesis and optical absorption studies of nano-size magnesium oxide powder, J. Phys. Chem. Solids 69 (2008), pp. 2764–2772, cited By 57.
  • P. Ayyub, M. Multani, M. Barma, V. Palkar, and R. Vijayaraghavan, Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3, J. Phys. C: Solid State Phys. 21 (1988), pp. 2229–2245, cited By 158.
  • N. Uekawa, N. Mochizuki, J. Kajiwara, F. Mori, Y. Wu, and K. Kakegawa, Nonstoichiometric properties of zinc oxide nanoparticles prepared by decomposition of zinc peroxide, Phys. Chem. Chem. Phys. 5 (2003), pp. 929–934, cited By 49.
  • N. Uekawa, N. Mochizuki, J. Kajiwara, F. Mori, Y. Wu, and K. Kakegawa, Erratum: Nonstoichiometric properties of zinc oxide nanoparticles prepared by decomposition of zinc peroxide, Phys. Chem. Chem. Phys. 5 (2003), pp. 1489–1490, cited By 1.
  • J. Li, R. Kykyneshi, J. Tate, and A. Sleight, p-type zinc oxide powders, Solid State Sci. 9 (2007), pp. 613–618, cited By 14.
  • J. Zhang and L. Gao, Synthesis and characterization of nanocrystalline tin oxide by sol-gel method, J. Solid State Chem. 177 (2004), pp. 1425–1430, cited By 178.
  • E. Abdelkader, L. Nadjia, B. Naceur, and B. Noureddine, SnO2 foam grain-shaped nanoparticles: Synthesis, characterization and UVA light induced photocatalysis, J. Alloys Compd. 679 (2016), pp. 408–419, cited By 0.
  • P. Ayyub, V. Palkar, S. Chattopadhyay, and M. Multani, Effect of crystal size reduction on lattice symmetry and cooperative properties, Phys. Rev. B 51 (1995), pp. 6135–6138, cited By 249.
  • M. Fukuhara, Lattice expansion of nanoscale compound particles, Phys. Lett. Sec. A 313 (2003), pp. 427–430, cited By 33.
  • P. Diehm, P. Ágoston, and K. Albe, Size-dependent lattice expansion in nanoparticles: Reality or anomaly?, ChemPhysChem 13 (2012), pp. 2443–2454, cited By 42.
  • K. Ohshima and J. Harada, An x-ray diffraction study of soft surface vibrations of fcc fine metal particles, J. Phys. C: Solid State Phys. 17 (1984), pp. 1607–1616, cited By 12.
  • M. Dubiel, S. Brunsch, W. Seifert, H. Hofmeister, and G. Tan, Stress state of silver nanoparticles embedded in a silicate glass matrix investigated by HREM and EXAFS spectroscopy, Eur. Phys. J. D 8 (2001), pp. 229–232, cited By 20.
  • G. Li, L. Li, J. Boerio-Goates, and B. Woodfield, High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry, J. Amer. Chem. Soc. 127 (2005), pp. 8659–8666, cited By 357.
  • Y. Ding, Y. Gao, Z.L. Wang, N. Tian, Z.Y. Zhou, and S. Sun, Facets and surface relaxation of tetrahexahedral platinum nanocrystals, Appl. Phys. Lett. 91 (2007), pp. 121901–1219013.
  • N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, and Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science 316 (2007), pp. 732–735.
  • N. Tian, Z.Y. Zhou, and S.G. Sun, Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles, J. Phys. Chem. C 112 (2008), pp. 19801–19817.
  • W. Niu, S. Zheng, D. Wang, X. Liu, H. Li, S. Han, J. Chen, Z. Tang, and G. Xu, Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals, J. Amer. Chem. Soc. 131 (2009), pp. 697–703, pMID: 19102696.
  • Z. Peng and H. Yang, Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property, Nano Today 4 (2009), pp. 143–164.
  • W. Niu, L. Zhang, and G. Xu, Shape-controlled synthesis of single-crystalline palladium nanocrystals, ACS Nano 4 (2010), pp. 1987–1996, pMID: 20307089.
  • X. Xia, J. Zeng, L.K. Oetjen, Q. Li, and Y. Xia, Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals, J. Amer. Chem. Soc. 134 (2012), pp. 1793–1801, pMID: 22206387.
  • S. Liu, N. Tian, A.Y. Xie, J.H. Du, J. Xiao, L. Liu, H.Y. Sun, Z.Y. Cheng, Z.Y. Zhou, and S.G. Sun, Electrochemically seed-mediated synthesis of sub-10 nm tetrahexahedral Pt nanocrystals supported on graphene with improved catalytic performance, J. Amer. Chem. Soc. 138 (2016), pp. 5753–5756, pMID: 27063648.
  • T. Huang and X.H.N. Xu, Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and pectroscopy, J. Mater. Chem. 20 (2010), pp. 9867–9876, pMID: 20698704.
  • Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.P. Wen, and Y. Xia, Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties, J. Amer. Chem. Soc. 132 (2010), pp. 11372–11378.
  • Q. Zhang, J. Xie, Y. Yu, J. Yang, and J.Y. Lee, Tuning the crystallinity of Au nanoparticles, Small 6 (2010), pp. 523–527.
  • Y. Zheng, Y. Ma, J. Zeng, X. Zhong, M. Jin, Z.Y. Li, and Y. Xia, Seed-mediated synthesis of single-crystal gold nanospheres with controlled diameters in the range 5–30 nm and their self-assembly upon dilution, Chem. Asian J. 8 (2013), pp. 792–799.
  • V. Nandwana, K. Elkins, N. Poudyal, G. Chaubey, K. Yano, and J. Liu, Size and shape control of monodisperse FePt nanoparticles, J. Phys. Chem. C 111 (2007), pp. 4185–4189, cited By 109.
  • L. Colak and G. Hadjipanayis, Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition, Nanotechnology 20 (2009), p. 485602, cited By 15.
  • B. Bian, J. Du, W. Xia, J. Zhang, J. Liu, W. Li, Z. Guo, and A. Yan, Effect of reaction temperature on the shape of FePt nanoparticles, IEEE Trans. Magn. 50 (2014), p. 2102704, cited By 0.
  • K. Elkins, D. Li, N. Poudyal, V. Nandwana, Z. Jin, K. Chen, and J. Liu, Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity, J. Phys. D: Appl. Phys. 38 (2005), pp. 2306–2309, cited By 104.
  • Y. Tamada, S. Yamamoto, M. Takano, S. Nasu, and T. Ono, Well-ordered L10-FePt nanoparticles synthesized by improved SiO2-nanoreactor method, Appl. Phys. Lett. 90 (2007), p. 162509, cited By 24.
  • J. Kim, C. Rong, Y. Lee, J. Liu, and S. Sun, From core/shell structured FePt/Fe3O4/MgO to ferromagnetic FePt nanoparticles, Chem. Mater. 20 (2008), pp. 7242–7245, cited By 51.
  • J. Kim, C. Rong, J. Ping Liu, and S. Sun, Dispersible ferromagnetic FePt nanoparticles, Adv. Mater. 21 (2009), pp. 906–909, cited By 84.
  • M. Delalande, M.F. Guinel, L. Allard, A. Delattre, R. Le Bris, Y. Samson, P. Bayle-Guillemaud, and P. Reiss, L10 ordering of ultrasmall FePt nanoparticles revealed by tem in situ annealing, J. Phys. Chem. C 116 (2012), pp. 6866–6872, cited By 26.
  • S. O’Brien, L. Brus, and C. Murray, Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis, J. Amer. Chem. Soc. 123 (2001), pp. 12085–12086, cited By 333.
  • J. Tang, F. Redl, Y. Zhu, T. Siegrist, L. Brus, and M. Steigerwald, An organometallic synthesis of TiO2 nanoparticles, Nano Lett. 5 (2005), pp. 543–548, cited By 90.
  • N. Zhao, W. Nie, X. Liu, S. Tian, Y. Zhang, and X. Ji, Shape- and size-controlled synthesis and dependent magnetic properties of nearly monodisperse Mn3O4 nanocrystals, Small 4 (2008), pp. 77–81, cited By 49.
  • L. Gelisio, K.R. Beyerlein, and P. Scardi, Atomistic modeling of lattice relaxation in metallic nanocrystals, Thin Solid Films 530 (2013), pp. 35–39.
  • L. Pauling, Atomic radii and interatomic distances in metals, J. Amer. Chem. Soc. 69 (1947), pp. 542–553, cited By 932.
  • J. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford, 1985.
  • P. Scardi and L. Gelisio, Diffraction from Nanocrystalline Materials, in Synchrotron Radiation: Basics, Methods and Applications, S. Mobilio, F. Boscherini, C. Meneghini,eds. Springer, Berlin, 2014, pp. 499–518.
  • M. Rappaz and A. Châtelain, Existence of a surface-induced pressure in anisotropic crystals, J. Phys. C: Solid State Phys. 14 (1981), pp. 4515–4520, cited By 9.
  • J.P. Borel and A. Châtelain, Surface stress and surface tension: Equilibrium and pressure in small particles, Sur. Sci. 156 (1985), pp. 572–579, cited By 25.
  • P. Scardi and M. Leoni, Diffraction line profiles from polydisperse crystalline systems, Acta Crystall. Sec. A 57 (2001), pp. 604–613.
  • P. Scardi and M. Leoni, Whole powder pattern modelling, Acta Crystall. Sec. A 58 (2002), pp. 190–200.
  • B.E. Warren, X-Ray Diffraction, Dover, New York, 1990.
  • A. Stokes and A. Wilson, A method of calculating the integral breadths of Debye-Scherrer lines: Generalization to non-cubic crystals, Math. Proc. Cambridge Philos. Soc. 40 (1944), pp. 197–198, cited By 23.
  • B. Warren and B. Averbach, The effect of cold-work distortion on x-ray patterns, J. Appl. Phys. 21 (1950), pp. 595–599, cited By 863.
  • B.E.Warren, Calculation of powder-pattern intensity distributions, J. Appl. Crystallogr. 11 (1978), pp. 695–698.
  • L. Gelisio, Structure and properties of nanostructured materials from atomistic modeling and advanced diffraction methods, Ph.D., University of Trento, 2014.
  • A.B. Yankovich, B. Berkels, W. Dahmen, P. Binev, S.I. Sanchez, S.A. Bradley, A. Li, I. Szlufarska, and P.M. Voyles, Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts, Nat. Commun. 5 (2014), p. 4155.
  • P. Scardi, A. Leonardi, L. Gelisio, M.R. Suchomel, B.T. Sneed, M.K. Sheehan, and C.K. Tsung, Anisotropic atom displacement in Pd nanocubes resolved by molecular dynamics simulations supported by x-ray diffraction imaging, Phys. Rev. B 91 (2015), p. 155414, pRB.
  • H. Sheng, M. Kramer, A. Cadien, T. Fujita, and M. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals, Phys. Rev. B Condens. Matt. Mater. Phys. 83 (2011), p. 134118, cited By 102.
  • A. Leonardi, M. Leoni, and P. Scardi, Directional pair distribution function for diffraction line profile analysis of atomistic models, J. Appl. Crystall. 46 (2013), pp. 63–75.
  • E.W.Weisstein, Mathworld -A wolfram web resource, “Dilogarithm”. Available at http://mathworld.wolfram.com/Dilogarithm.html.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.