272
Views
25
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Phase stability, anisotropic elastic properties and electronic structures of C15-type Laves phases ZrM2 (M = Cr, Mo and W) from first-principles calculations

, &
Pages 2406-2424 | Received 23 Dec 2016, Accepted 19 May 2017, Published online: 01 Jun 2017

References

  • Y. Zhong, J. Liu, R.A. Witt, Y. Sohn, and Z.K. Liu, Al2(Mg, Ca) phases in Mg–Al–Ca ternary system: First-principles prediction and experimental identification, Scr. Mater. 55 (2006), pp. 573–576.10.1016/j.scriptamat.2006.03.068
  • W. Hu, Y. Liu, D. Li, X. Zeng, and C. Xu, First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf, Comput. Mater. Sci. 83 (2014), pp. 27–34.10.1016/j.commatsci.2013.10.029
  • M. Andersson, M. de Boissieu, S. Brühne, C. Drescher, W. Assmus, S. Ohahshi, A.P. Tsai, M. Mihalkovič, M. Krajčí, and Ö. Rapp, Electronic and structural properties of Laves-phase MgZn2 of varying chemical disorder, Phys. Rev. B 82 (2010), p. 024202.10.1103/PhysRevB.82.024202
  • W.Y. Yu, N. Wang, X.B. Xiao, B.Y. Tang, L.M. Peng, and W.J. Ding, First-principles investigation of the binary AB2 type Laves phase in Mg–Al–Ca alloy: Electronic structure and elastic properties, Solid State Sci. 11 (2009), pp. 1400–1407.10.1016/j.solidstatesciences.2009.04.017
  • J. Sun and B. Jiang, Ab initio calculation of the phase stability, mechanical properties and electronic structure of ZrCr2 Laves phase compounds, Philos. Mag. 84 (2004), pp. 3133–3144.10.1080/14786430410001720345
  • M.J. McDermott and K.K. Marklund, Partial Quenching of Rare Earth Moment in Cubic Laves Intermetallic Compounds, J. Appl. Phys. 40 (1969), pp. 1007–1008.10.1063/1.1657505
  • M.F. Chisholm, S. Kumar, and P. Hazzledine, Dislocations in complex materials, Science 307 (2005), pp. 701–703.10.1126/science.1105962
  • B.M. Klein, W.E. Pickett, D.A. Papaconstantopoulos, and L.L. Boyer, Electronic structure, superconductivity, and magnetism in the C15 compounds ZrV2, ZrFe2, and ZrCo2, Phys. Rev. B 27 (1983), p. 6721.10.1103/PhysRevB.27.6721
  • J.J. Liu, W.J. Ren, and Z.D. Zhang, Spin configuration and magnetostrictive properties of Laves compounds TbxDy0.7-xPr0.3(Fe0.9B0.1)1.93(0.10 ≤ x ≤ 0.28), J. Appl. Phys. 100 (2006), p. 023904.10.1063/1.2219344
  • M. Sahlberg, J. Ångström, C. Zlotea, P. Beran, M. Latroche, and C. Pay Gómez, Structure and hydrogen storage properties of the hexagonal Laves phase Sc(Al1-xNix)2, J. Solid State Chem. 196 (2012), pp. 132–137.10.1016/j.jssc.2012.06.002
  • X. Zhang, L. Chen, M. Ma, Y. Zhu, S. Zhang, and R. Liu, Structural, elastic, and thermal properties of Laves phase ZrV2 under pressure, J. Appl. Phys. 109 (2011), p. 113523.10.1063/1.3590707
  • S. Banerjee and P. Mukhopadhyay, Phase Transformations: Examples from Titanium and Zirconium Alloys, Elsevier, Oxford, 2007.
  • F. Laves, Theory of Alloy Phases, ASM, Cleveland, OH, 1956.
  • T.B. Massalski, Structure and Stability of Alloys, in Physical Metallurgy, R.W. Cahn and P. Hassen, eds., Elsevier, Amsterdam, 1996.
  • D.J. Thoma and J.H. Perepezko, An experimental evaluation of the phase relationships and solubilities in the Nb–Cr system, Mater. Sci. Eng.: A 156 (1992), pp. 97–108.10.1016/0921-5093(92)90420-6
  • S. Hong and C.L. Fu, Phase stability and elastic moduli of Cr2Nb by first-principles calculations, Intermetallics 7 (1999), pp. 5–9.10.1016/S0966-9795(98)00005-3
  • F. Sun, J. Zhang, S. Mao, and X. Han, First-principles studies of the structural and electronic properties of the C14 Laves phase XCr2 (X = Ti, Zr, Nb, Hf and Ta), Philos. Mag. 93 (2013), pp. 2563–2575.10.1080/14786435.2013.778427
  • B.F. Luan, J.M. Wang, R.S. Qiu, B.R. Tao, W.J. He, X.Y. Zhang, R.P. Liu, and Q. Liu, The distribution trends and site preferences of alloying elements in precipitates within a Zr alloy: A combined first-principles and experimental study, J. Alloys Compd. 678 (2016), pp. 456–462.10.1016/j.jallcom.2016.03.198
  • S.C. Lumley, S.T. Murphy, P.A. Burr, R.W. Grimes, P.R. Chard-Tuckey, and M.R. Wenman, The stability of alloying additions in Zirconium, J. Nuclear Mater. 437 (2013), pp. 122–129.10.1016/j.jnucmat.2013.01.335
  • X.K. Liu, W. Zhou, Z. Zheng, and S.M. Peng, The elastic and thermodynamic properties of ZrMo2 from first principles calculations, J. Alloys Compd. 615 (2014), pp. 975–982.10.1016/j.jallcom.2014.07.063
  • N. Turkdal, E. Deligoz, H. Ozisik, and H.B. Ozisik, First-principles studies of the structural, elastic, and lattice dynamical properties of ZrMo2 and HfMo2, Phase Transit. 89 (2016), pp. 1–12.10.1080/01411594.2016.1252979
  • E. Deligoz, H. Ozisik, and K. Colakoglu, Theoretical predictions of the structural, mechanical and lattice dynamical properties of XW2 (X = Zr, Hf) Laves phases, Philos. Mag. 94 (2014), pp. 1379–1392.10.1080/14786435.2014.886024
  • J. Wu, B. Zhang, and Y. Zhan, Intrinsic properties and structure of AB2 Laves phase ZrW2, Metall. Mater. Trans. A (2017), pp. 1–8.
  • C. Li, J.L. Lim Hoe, and P. Wu, Empirical correlation between melting temperature and cohesive energy of binary Laves phases, J. Phys. Chem. Solids 64 (2003), pp. 201–212.10.1016/S0022-3697(02)00267-6
  • A.E. Carlsson and P.J. Meschter, Ab Initio Calculations, in Intermetallic Compounds, J.H. Westbrook and R.L. Fleischer, eds., John Wiley and Sons, New York, NY, 1994.
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter. 14 (2002), pp. 2717–2744.
  • G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996), pp. 15–50.10.1016/0927-0256(96)00008-0
  • J. Feng, B. Xiao, R. Zhou, W. Pan, and D.R. Clarke, Anisotropic elastic and thermal properties of the double perovskite slab–rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure, Acta Mater. 60 (2012), pp. 3380–3392.10.1016/j.actamat.2012.03.004
  • Y. Liu, W.C. Hu, D.J. Li, X.Q. Zeng, C.S. Xu, and X.J. Yang, First-principles investigation of structural and electronic properties of MgCu2 Laves phase under pressure, Intermetallics 31 (2012), pp. 257–263.10.1016/j.intermet.2012.07.017
  • Y. Kitano, M. Takata, and Y. Komura, High resolution electron microscopy of partial dislocations in the Laves phase structure, J. Microsc. 142 (1986), pp. 181–190.10.1111/jmi.1986.142.issue-2
  • S. Hong and C.L. Fu, Hydrogen in Laves phase ZrX2 (X = V, Cr, Mn, Fe Co, Ni) compounds: Binding energies and electronic and magnetic structure, Phys. Rev. B 66 (2002), p. 094109.10.1103/PhysRevB.66.094109
  • J.L. Soubeyroux, M. Bououdina, D. Fruchart, and L. Pontonnier, Phase stability and neutron diffraction studies of Laves phases Zr(Cr1-xMx)2 with M = Mn, Fe Co, Ni, Cu and 0 < x < 0.2 and their hydrides, J. Alloys Compd. 219 (1995), pp. 48–54.10.1016/0925-8388(94)05019-8
  • Ž. Blažlna, R. Trojko, and Z. Ban, High-temperature equilibria in the Zr1-xHfxM2, Zr1-xTixM2 and Hf1-xTixM2 (M ≡ Mo or W) systems, J. Less Common Met. 83 (1982), pp. 175–183.10.1016/0022-5088(82)90268-5
  • F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, Cohesion in Metals, Transition Metal Alloys, in Cohesion and Structure, F.R. de Boer and D.G. Pettifor, eds., North Holland Physics, Amsterdam, 1988.
  • Ž. Blažlna and Z. Ban, High temperature equilibria between BCC and MgCu2-type structures in the Zr1-xMxW2 and Hf1-xMxW2 (M ≡ Al, Si) systems, J. Less Common Met. 90 (1983), pp. 223–231.10.1016/0022-5088(83)90072-3
  • M.E. Fine, L.D. Brown, and H.L. Marcus, Elastic constants versus melting temperature in metals, Scr. Metall. 18 (1984), pp. 951–956.10.1016/0036-9748(84)90267-9
  • H. Zhang, S.L. Shang, J.E. Saal, A. Saengdeejing, Y. Wang, L.Q. Chen, and Z.K. Liu, Enthalpies of formation of magnesium compounds from first-principles calculations, Intermetallics 17 (2009), pp. 878–885.10.1016/j.intermet.2009.03.017
  • Y.H. Duan, Y. Sun, and L. Lu, Thermodynamic properties and thermal conductivities of TiAl3-type intermetallics in Al–Pt–Ti system, Comput. Mater. Sci. 68 (2013), pp. 229–233.10.1016/j.commatsci.2012.11.012
  • C.X. Li, Y.H. Duan, and W.C. Hu, Electronic structure, elastic anisotropy, thermal conductivity and optical properties of calcium apatite Ca5(PO4)3X(X = F, Cl or Br), J. Alloys Compd. 619 (2015), pp. 66–77.10.1016/j.jallcom.2014.09.022
  • D.C. Wallace, Thermodynamics of Crystals, Wiley, New York, NY, 1972.
  • B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, and P.C. Schmidt, Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases, Intermetallics 11 (2003), pp. 23–32.10.1016/S0966-9795(02)00127-9
  • Q. Yao, J. Sun, D. Lin, S. Liu, and B. Jiang, First-principles studies of defects, mechanical properties and electronic structure of Cr-based Laves phases, Intermetallics 15 (2007), pp. 694–699. doi:10.1016/j.intermet.2006.10.022.
  • J.F. Nye, Physical Properties of Crystals, Oxford University Press, Oxford, 1985.
  • X.P. Gao, Y.H. Jiang, R. Zhou, and J. Feng, Stability and elastic properties of Y-C binary compounds investigated by first principles calculations, J. Alloys Compd. 587 (2014), pp. 819–826.10.1016/j.jallcom.2013.11.005
  • Y.Y. Kong, Y.H. Duan, L.S. Ma, and R.Y. Li, Phase stability, elastic anisotropy and electronic structure of cubic MAl2 (M = Mg, Ca, Sr and Ba) Laves phases from first-principles calculations, Mater. Res. Exp. 3 (2016), p. 106505.10.1088/2053-1591/3/10/106505
  • F. Saidi, M.K. Benabadji, H.I. Faraoun, and H. Aourag, Structural and mechanical properties of Laves phases YCu2 and YZn2: First principles calculation analyzed with data mining approach, Comput. Mater. Sci. 89 (2014), pp. 176–181.10.1016/j.commatsci.2014.03.053
  • K. Foster, J.E. Hightower, R.G. Leisuret, and A.V. Skripov, Elastic moduli of the C15 Laves-phase materials TaV2, TaV2H(D)x and ZrCr2, Philos. Mag. Part B 80 (2000), pp. 1667–1679.10.1080/13642810008205755
  • Y.H. Duan, Y. Sun, M.J. Peng, and S.G. Zhou, Anisotropic elastic properties of the Ca–Pb compounds, J. Alloys Compd. 595 (2014), pp. 14–21.10.1016/j.jallcom.2014.01.108
  • X.H. Zhang, Z.P. Wang, and Y.J. Qiao, Prediction of stabilities, mechanical properties and electronic structures of tetragonal 3d transition metal disilicides: A first-principles investigation, Acta Mater. 59 (2011), pp. 5584–5592.10.1016/j.actamat.2011.05.033
  • C.J. Qi, Y.H. Jiang, Y.Z. Liu, and R. Zhou, Elastic and electronic properties of XB2 (X = V, Nb, Ta, Cr, Mo, and W) with AlB2 structure from first principles calculations, Ceram. Int. 40 (2014), pp. 5843–5851.10.1016/j.ceramint.2013.11.026
  • J.J. Lewandowski, W.H. Wang, and A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett. 85 (2005), pp. 77–87.10.1080/09500830500080474
  • D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Technol. 8 (1992), pp. 345–349.10.1179/mst.1992.8.4.345
  • X.Q. Chen, H.Y. Niu, D.Z. Li, and Y.Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19 (2011), pp. 1275–1281.10.1016/j.intermet.2011.03.026
  • H. Ledbetter and A. Migliori, A general elastic-anisotropy measure, J. Appl. Phys. 100 (2006), p. 063516.10.1063/1.2338835
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (2008), p. 055504.10.1103/PhysRevLett.101.055504
  • C. Zener, Elasticity and Anelasticity of Metals, University of Chicago, Chicago, IL, 1948.
  • D.H. Chung and W.R. Buessem, The Elastic Anisotropy of Crystals, in Anisotropy in Single Crystal Refractory Compounds, F.W. Vahldiek and S.A. Mersol, eds., Plenum Press, New York, NY, 1968.
  • P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998), pp. 4891–4904.10.1063/1.368733
  • M.A. Hopcroft, W.D. Nix, and T.W. Kenny, What is the Young's Modulus of Silicon? J. Microelectromechanical Syst. 19 (2010), pp. 229–238.10.1109/JMEMS.2009.2039697
  • W.C. Hu, Y. Liu, D.J. Li, X.Q. Zeng, and C.S. Xu, Mechanical and thermodynamic properties of Al3Sc and Al3Li precipitates in Al–Li–Sc alloys from first-principles calculations, Phys. B: Condens. Matter 427 (2013), pp. 85–90.10.1016/j.physb.2013.06.038
  • J.H. Xu, T. Oguchi, and A.J. Freeman, Solid-solution strengthening: substitution of V in Ni3Al and structural stability of Ni3(Al, V), Phys. Rev. B 36 (1987), p. 4186.10.1103/PhysRevB.36.4186
  • J. Wang, A. Gao, W. Chen, X.D. Zhang, B. Zhou, and Z. Jiang, The structural, elastic, phonon, thermal and electronic properties of MnX (X = Ni, Pd and Pt) alloys: First-principles calculations, J. Magn. Magn. Mater. 333 (2013), pp. 93–99.10.1016/j.jmmm.2012.12.050
  • A. Ormeci, F. Chu, J.M. Wills, T.E. Mitchell, R.C. Albers, D.J. Thoma, and S.P. Chen, Total-energy study of electronic structure and mechanical behavior of C15 Laves phase compounds: NbCr2 and HfV2, Phys. Rev. B 54 (1996), p. 12753.10.1103/PhysRevB.54.12753
  • D. Music, A. Houben, R. Dronskowski, and J.M. Schneider, Ab initio study of ductility in M2AlC (M = Ti, V, Cr), Phys. Rev. B 75 (2007), p. 174102.10.1103/PhysRevB.75.174102
  • J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou, and W. Pan, Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore, Acta Mater. 59 (2011), pp. 1742–1760.10.1016/j.actamat.2010.11.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.