569
Views
26
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Study of the effects of grain size on the mechanical properties of nanocrystalline copper using molecular dynamics simulation with initial realistic samples

, , , &
Pages 2387-2405 | Received 20 Jan 2017, Accepted 18 May 2017, Published online: 15 Jun 2017

References

  • M. Meyers, A. Mishra, and D. Benson, Mechanical properties of nanocrystalline materials, Progr. Mater. Sci. 51 (2006), pp. 427–556. Available at http://www.sciencedirect.com/science/article/pii/S0079642505000447.
  • J. Schiøtz, T. Vegge, F.D. Di Tolla, and K.W. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals, Phys. Rev. B 60 (1999), pp. 11971–11983. Available at http://link.aps.org/doi/10.1103/PhysRevB.60.11971.
  • E.N. Hahn and M.A. Meyers, Grain-size dependent mechanical behavior of nanocrystalline metals, Mater. Sci. Eng. A 646 (2015), pp. 101–134. Available at http://www.sciencedirect.com/science/article/pii/S0921509315302276.
  • A. Chokshi, A. Rosen, J. Karch, and H. Gleiter, On the validity of the hall-petch relationship in nanocrystalline materials, Scr. Metall. 23 (1989), pp. 1679–1683. Available at http://www.sciencedirect.com/science/article/pii/0036974889903426.
  • J. Schiøtz and K.W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science 301 (2003), pp. 1357–1359.
  • J. Schiøtz, Atomic-scale modeling of plastic deformation of nanocrystalline copper, Scr. Mater. 51 (2004), pp. 837–841.
  • H. Van Swygenhoven, A. Caro, and D. Farkas, A molecular dynamics study of polycrystalline fcc metals at the nanoscale: Grain boundary structure and its influence on plastic deformation, Mater. Sci. Eng. A 309 (2001), pp. 440–444.
  • H. Van Swygenhoven, M. Spaczer, and A. Caro, Microscopic description of plasticity in computer generated metallic nanophase samples: A comparison between cu and ni, Acta Mater. 47 (1999), pp. 3117–3126.
  • H. Van Swygenhoven and P. Derlet, Grain-boundary sliding in nanocrystalline fcc metals, Phys. Rev. B 64 (2001), pp. 224105-1–224105-9.
  • H. Van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas, Competing plastic deformation mechanisms in nanophase metals, Phys. Rev. B 60 (1999), pp. 22–25.
  • V. Yamakov, D. Wolf, S. Phillpot, A. Mukherjee, and H. Gleiter, Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials, Philos. Mag. Lett. 83 (2003), pp. 385–393.
  • V. Yamakov, D. Wolf, S. Phillpot, and H. Gleiter, Deformation twinning in nanocrystalline al by molecular-dynamics simulation, Acta Mater. 50 (2002), pp. 5005–5020.
  • Y. Tang, E.M. Bringa, and M.A. Meyers, Inverse hall-petch relationship in nanocrystalline tantalum, Mater. Sci. Eng. A 580 (2013), pp. 414–426.
  • K. Zhou, B. Liu, Y. Yao, and K. Zhong, Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics, Mater. Sci. Eng. A 615 (2014), pp. 92–97.
  • A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams Vol. 501, John Wiley & Sons, New York, 2009.
  • Y.B. Guo, T. Xu, and M. Li, Atomistic calculation of internal stress in nanoscale polycrystalline materials, Philos. Mag. 92 (2012), pp. 3064–3083.
  • S. Foiles, M. Baskes, and M.S. Daw, Embedded-atom-method functions for the fcc metals cu, ag, au, ni, pd, pt, and their alloys, Phys. Rev. B 33 (1986), pp. 7983–7991.
  • C.L. Kelchner, S. Plimpton, and J. Hamilton, Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B 58 (1998), pp. 11085–11088.
  • http://lammps.sandia.gov/doc/compute_pressure.html.
  • M. Falk and J. Langer, Dynamics of viscoplastic deformation in amorphous solids, Phys. Rev. E 57 (1998), pp. 7192–7205.
  • F. Shimizu, S. Ogata, and J. Li, Theory of shear banding in metallic glasses and molecular dynamics calculations, Mater. Trans. 48 (2007), pp. 2923–2927.
  • P. Hirel, Atomsk: a tool for manipulating and converting atomic data files, Comput. Phys. Commun. 197 (2015), pp. 212–219.
  • B. Mantisi, Generation of polycrystalline material at the atomic scale, Comput. Mater. Sci. 118 (2016), pp. 245–250.
  • S. Phillpot, D. Wolf, and H. Gleiter, Molecular-dynamics study of the synthesis and characterization of a fully dense, three-dimensional nanocrystalline material, J. Appl. Phys. 78 (1995), pp. 847–861.
  • S. Phillport, J. Wang, D. Wolf, and H. Gleiter, Computer simulation of the structure and dynamical properties of grain boundaries in a nanocrystalline model material, Mater. Sci. Eng. A 204 (1995), pp. 76–82.
  • S. Phillpot, D. Wolf, and H. Gleiter, A structural model for grain boundaries in nanocrystalline materials, Scr. Metall. Mater. 33 (1995), pp. 1245–1251.
  • http://lammps.sandia.gov/doc/fix_deform.html.
  • C. Youngdahl, J. Weertman, R. Hugo, and H. Kung, Deformation behavior in nanocrystalline copper, Scr. Mater. 44 (2001), pp. 1475–1478.
  • L. Wang, J. Teng, P. Liu, A. Hirata, E. MaZ. Zhang, M. Chen, and X. Han Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum, Nat. Commun. 5 (2014), pp. 4402–4409.
  • G. Nieman, J. Weertman, and R. Siegel, Mechanical behavior of nanocrystalline metals, Nanostruct. Mater. 1 (1992), pp. 185–190.
  • P. Sanders, J. Eastman, and J. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Mater. 45 (1997), pp. 4019–4025.
  • G.J.J. Gao, Y.J. Wang, and S. Ogata, Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains, Comput. Mater. Sci. 79 (2013), pp. 56–62.
  • T. Zhang, K. Zhou, and Z. Chen, Strain rate effect on plastic deformation of nanocrystalline copper investigated by molecular dynamics, Mater. Sci. Eng. A 648 (2015), pp. 23–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.