723
Views
17
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Cross-slip in face-centered cubic metals: a general Escaig stress-dependent activation energy line tension model

&
Pages 347-370 | Received 11 Sep 2017, Accepted 03 Nov 2017, Published online: 01 Dec 2017

References

  • D. Hull and D. J. Bacon , Intrododuction to Dislocations , 4th ed., University of Liverpool, Elsevier, 2001.
  • P.J. Jackson , Dislocation modelling of shear in f.c.c. crystals , Prog. Mater. Sci. 29 (1985), pp. 139–175.10.1016/0079-6425(85)90009-X
  • E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo , Thermostatistical modelling of hot deformation in FCC metals , Int. J. Plast. 47 (2013), pp. 202–221.10.1016/j.ijplas.2013.02.002
  • S. Suresh , Fatigue of Materials , Cambridge: Cambridge University Press, 1998.10.1017/CBO9780511806575
  • D. Tramontina , Molecular dynamics simulations of shock-induced plasticity in tantalum , High Energy Density Phys. 10 (2014), pp. 9–15.10.1016/j.hedp.2013.10.007
  • Y. Tang and J.A. El-Awady , Formation and slip of pyramidal dislocations in hexagonal close-packed magnesium single crystals , Acta Mater. 71 (2014), pp. 319–332.10.1016/j.actamat.2014.03.022
  • M.S. Duesbery , N.P. Louat , and K. Sadananda , The mechanics and energetics of cross-slip , Acta Metall. Mater. 40 (1992), pp. 149–158.10.1016/0956-7151(92)90208-V
  • P.J. Jackson , The role of cross-slip in the plastic deformation of crystals , Mater. Sci. Eng. 57(1) (1983), pp. 39–47.10.1016/0025-5416(83)90025-3
  • G. Saada , Cross-slip and work hardening of f.c.c. crystals , Mater. Sci. Eng. A 137 (1991), pp. 177–183.10.1016/0921-5093(91)90333-I
  • W. Püschl , Models for dislocation cross-slip in close-packed crystal structures: a critical review , Prog. Mater. Sci. 47 (2002), pp. 415–461.10.1016/S0079-6425(01)00003-2
  • R.L. Fleischer , Cross slip of extended dislocations , Acta Metall. 7 (1959), pp. 134–135.10.1016/0001-6160(59)90122-1
  • J.C. Fisher , Dislocations and Mechanical Properties of Crystals: An International Conference Held at Lake Placid , 1957.
  • T. Rasmussen , Comment on ‘Atomistic simulation of cross-slip processes in model fee structures’ , Philos. Mag. A 80 (2000), pp. 1291–1292.10.1080/01418610008212116
  • G. Liu , X. Cheng , J. Wang , K. Chen , and Y. Shen , Quasi-periodic variation of Peierls stress of dislocations in face-centered-cubic metals , Int. J. Plast. 90 (2017), pp. 156–166.
  • S.I. Rao , D.M. Dimiduk , T. A. Parthasarathy , M. D. Uchic , and C. Woodward , Atomistic simulations of intersection cross-slip nucleation in L12 Ni3Al , Scr. Mater. 66 (2012), pp. 410–413.10.1016/j.scriptamat.2011.12.002
  • T. Vegge , T. Rasmussen , T. Leffers , O.B. Pedersen , and K.W. Jacobsen , Atomistic simulations of cross-slip of jogged screw dislocations in copper , Philos. Mag. Lett. 81 (2001), pp. 137–144.10.1080/09500830010019040
  • S.I. Rao , D.M. Dimiduk , J.A. El-Awady , T.A. Parthasarathy , M.D. Uchic , and C. Woodward , Activated states for cross-slip at screw dislocation intersections in face-centered cubic nickel and copper via atomistic simulation , Acta Mater. 58 (2010), pp. 5547–5557.10.1016/j.actamat.2010.06.005
  • S.I. Rao , D.M. Dimiduk , C. Woodward , and T.A. Parthasarathy , On the Escaig obstacle hypothesis for cross-slip in face-centered-cubic materials , Philos. Mag. Lett. 91 (2011), pp. 452–457.10.1080/09500839.2011.581703
  • S.I. Rao , D.M. Dimiduk , T.A. Parthasarathy , M.D. Uchic , and C. Woodward , Atomistic simulations of surface cross-slip nucleation in face-centered cubic nickel and copper , Acta Mater. 61 (2013), pp. 2500–2508.10.1016/j.actamat.2013.01.026
  • A.M. Hussein , S.I. Rao , M.D. Uchic , D.M. Dimiduk , and J.A. El-Awady , Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals , Acta Mater. 85 (2015), pp. 180–190.10.1016/j.actamat.2014.10.067
  • L.P. Kubin , G. Canova , M. Condat , B. Devincre , V. Pontikis , and Y. Bréchet , Dislocation microstructures and plastic Flow: A 3D simulation , Solid State Phenom. 23–24 (1992), pp. 455–472.10.4028/www.scientific.net/SSP.23-24
  • B. Ramírez , N. Ghoniem , and G. Po , Ab initio continuum model for the influence of local stress on cross-slip of screw dislocations in fcc metals , Phys. Rev. B 86 (2012), pp. 1–11.
  • Z.Q. Wang , I.J. Beyerlein , and R. Lesar , Plastic anisotropy in fcc single crystals in high rate deformation , Int. J. Plast. 25 (2009), pp. 26–48.10.1016/j.ijplas.2008.01.006
  • S. Groh , E.B. Marin , M.F. Horstemeyer , and H.M. Zbib , Multiscale modeling of the plasticity in an aluminum single crystal , Int. J. Plast. 25 (2009), pp. 1456–1473.10.1016/j.ijplas.2008.11.003
  • H.M. Zbib and T. Diaz de la Rubia , A multiscale model of plasticity , Int. J. Plast. 18 (2002), pp. 1133–1163.10.1016/S0749-6419(01)00044-4
  • A. Alankar , D.P. Field , and H.M. Zbib , Explicit incorporation of cross-slip in a dislocation density-based crystal plasticity model , Philos. Mag. 92 (2012), pp. 3084–3100.10.1080/14786435.2012.685964
  • A.N. Stroh , Constrictions and jogs in extended dislocations , Proc. Phys. Soc. Sect. B 67 (1954), p. 427.10.1088/0370-1301/67/5/307
  • B. Escaig , Dislocation Dynamics . McGraw-Hill Series in Materials-Science and Engineering, New York, 1968.
  • K. Kang , J. Yin , and W. Cai , Stress dependence of cross slip energy barrier for face-centered cubic nickel , J. Mech. Phys. Solids 62 (2014), pp. 181–193.10.1016/j.jmps.2013.09.023
  • J. L. John Price Hirth , Theory of Dislocations , 2nd ed. New York : Wiley, 1982.
  • S. Rao , Reply to comment on ‘atomistic simulation of cross-slip processes in model fcc structures,’ Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., 80, (2000), p. 1293.
  • T. Vegge , Atomistic simulations of screw dislocation cross slip in copper and nickel , Mater. Sci. Eng. A 309–310 (2001), pp. 113–116.10.1016/S0921-5093(00)01624-5
  • D. Mordehai , I. Kelson , and G. Makov , Cross-slip and annihilation of screw dislocations in Cu: A molecular dynamics study, Mater. Sci. Eng. A 400–401(1–2 SUPPL.) (2005), pp. 37–39.10.1016/j.msea.2005.03.077
  • J. Bonneville and B. Escaig , Cross-slipping process and the stress-orientation dependence in pure copper , Acta Metall. 27 (1979), pp. 1477–1486.10.1016/0001-6160(79)90170-6
  • J. L. M. D. Caillard , Thermally Activated Mechanisms in Crystal Plasticity, 1st Edition. Elsevier, Cambridge, 2003.
  • S.I. Rao , D.M. Dimiduk , T.A. Parthasarathy , J. El-Awady , C. Woodward , and M.D. Uchic , Calculations of intersection cross-slip activation energies in fcc metals using nudged elastic band method , Acta Mater. 59 (2011), pp. 7135–7144.10.1016/j.actamat.2011.08.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.