236
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

The different influences of the two incorporation sites of B atoms on the mechanical and thermodynamic properties of B2–ZrCu compounds: a first-principle calculation

, &
Pages 517-530 | Received 25 Sep 2017, Accepted 17 Nov 2017, Published online: 04 Dec 2017

References

  • W.H. Gao, X.L. Meng, and W. Cai, Martensite structure and phase transformation of quaternary ZrCuAlCo high temperature shape memory alloys, J. Alloys Compd. 607 (2014), pp. 99–103.10.1016/j.jallcom.2014.04.061
  • G.S. Firstov, J. Van Humbeeck, and Y.N. Koval, Comparison of high temperature shape memory behaviour for ZrCu-based, Ti–Ni–Zr and Ti–Ni–Hf alloys, Scr. Mater. 50 (2004), pp. 243–248.10.1016/j.scriptamat.2003.09.010
  • X. Meng, W. Gao, and Z. Gao, Substructure and interface of the superstructure martensite in Zr50Cu50 High temperature shape memory alloy, Mater. Lett. 117 (2014), pp. 221–224.10.1016/j.matlet.2013.05.038
  • S. Pauly, J. Das, and J. Bednarcik, Deformation-induced martensitic transformation in Cu–Zr–(Al, Ti) bulk metallic glass composites, Scr. Mater. 60 (2009), pp. 431–434.10.1016/j.scriptamat.2008.11.015
  • S.H. Zhou and R.E. Napolitano, Phase stability for the Cu–Zr system: First-principles, experiments and solution-based modeling, Acta Mater. 58 (2010), pp. 2186–2196.10.1016/j.actamat.2009.12.004
  • S.H. Zhou and R.E. Napolitano, Identification of the B33 martensite phase in Cu–Zr using first-principles and X-ray diffraction, Scr. Mater. 59 (2008), pp. 1143–1146.10.1016/j.scriptamat.2008.07.040
  • Y.Y. Ye, C.T. Chan, and K.M. Ho, Structural and electronic properties of the martensitic alloys TiNi, TiPd, and TiPt, Phys. B Condens. Matter 2 (1997), pp. 8–22.
  • R. Mahlangu, M.J. Phasha, and H.R. Chauke, Structural, elastic and electronic properties of equiatomic PtTi as potential high-temperature shape memory alloy, Intermetallics 33 (2013), pp. 27–32.10.1016/j.intermet.2012.09.021
  • G. Yi, X. Zhang, and J. Qin, Effects of Ni and Ti on the phase stability, martensitic transformation and mechanical properties of B2 CuZr phase, Comput. Mater. Sci. 110 (2015), pp. 121–125.10.1016/j.commatsci.2015.08.013
  • J. Du, B. Wen, and R. Melnik, Phase stability, elastic and electronic properties of Cu–Zr binary system intermetallic compounds: A first-principles study, J. Alloys Compd. 588 (2014), pp. 96–102.10.1016/j.jallcom.2013.11.018
  • A.W. Nicholls, I.R. Harris, and W. Mangen, Identification of phases resulting from the transformation of the intermetallic phase ZrCu, J. Mater. Sci. Lett. 5 (1986), pp. 217–220.10.1007/BF01672055
  • Y.N. Koval, G.S. Firstov, and A.V. Kotko, Martensitic transformation and shape memory effect in ZrCu intermetallic compound, Scr. Metall. Mater. 27 (1992), pp. 1611–1616.10.1016/0956-716X(92)90153-6
  • D. Schryvers, G.S. Firstov, and J.W. Seo, Unit cell determination in CuZr martensite by electron microscopy and X-ray diffraction, Scr. Mater. 36 (1997), pp. 1119–1125.10.1016/S1359-6462(97)00003-1
  • J.W. Seo and D. Schryvers, TEM investigation of the microstructure and defects of CuZr martensite. Part I: Morphology and twin systems, Acta Mater. 46 (1998), pp. 1165–1175.
  • J.W. Seo and D. Schryvers, TEM investigation of the microstructure and defects of CuZr martensite. Part II: Planar defects, Acta Mater. 46 (1998), pp. 1177–1183.
  • Y. Pan, P. Mao, and H. Jiang, Insight into the effect of Mo and Re on mechanical and thermodynamic properties of NbSi2 based silicide, Ceram. Soc. 43 (2017), pp. 5274–5282.
  • P. Yan, X. Chong, and Y. Jiang, Effects of alloying elements such as Ti, Zr and Hf on the mechanical and thermodynamic properties of Pd-base superalloy, J. Alloys Compd. 710 (2017), pp. 589–599.10.1016/j.jallcom.2017.03.290
  • S.J. Kang, S. Park, and M. Kim, Enhanced mechanical property of Fe–Al alloy due to Mn insertion: Ab initio study, J. Alloys Compd. 583 (2014), pp. 295–299.10.1016/j.jallcom.2013.08.167
  • W.H. Gao, X.L. Meng, and G.B. Song, Effect of Hf content on martensitic transformation, microstructure, and mechanical properties of Cu50Zr50−xHfx alloys, J. Alloys Compd. 662 (2016), pp. 578–582.10.1016/j.jallcom.2015.12.059
  • F. Meng, K. Tsuchiya, and S. Ii, Influence of Ni on stability of martensitic transformation in Zr50Cu50−xNix, J. Alloys Compd. 577 (2013), pp. S136–S140.10.1016/j.jallcom.2012.01.089
  • B.C. Giessen, R. Ray, and S.H. Hahn, Extensive interstitial solid solutions of metals in metals, Phys. Rev. Lett. 26 (1971), pp. 509–512.10.1103/PhysRevLett.26.509
  • J. Pan, J. Tong, and M. Tian, Fundamentals of Materials Science, Shanghai Jiao Tong University Press, Shang Hai, 2006.
  • M.D. Segall, P.J.D. Lindan, and M.J. Probert, First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter 14 (2002), p. 2717–2744.10.1088/0953-8984/14/11/301
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), p. 3865–3868.10.1103/PhysRevLett.77.3865
  • Y. Pan and Y. Lin, Influence of B concentration on the structural stability and mechanical properties of Nb–B compounds, J. Phys. Chem. C 119 (2015), pp. 23175–23183.10.1021/acs.jpcc.5b07877
  • E.M. Carvalho and I.R. Harris, Constitutional and structural studies of the intermetallic phase, ZrCu, J. Mater. Sci. 15 (1980), pp. 1224–1230.10.1007/BF00551811
  • W.D. Callister, Fundamentals of Materials Science and Engineering, Wiley, London, 2008.
  • J. Yang, M. Shahid, and C. Wan, Anisotropy in elasticity, sound velocities and minimum thermal conductivity of zirconia from first-principles calculations, J. Eur. Ceram. Soc. 37 (2017), pp. 689–695.10.1016/j.jeurceramsoc.2016.08.034
  • O. Pavlic, W. Ibarra-Hernandez, and I. Valencia-Jaime, Design of Mg alloys: The effects of Li concentration on the structure and elastic properties in the Mg–Li binary system by first principles calculations, J. Alloys Compd. 691 (2017), pp. 15–25.10.1016/j.jallcom.2016.08.217
  • Z.J. Wu, E.J. Zhao, and H.P. Xiang, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B. 76 (2007), p. 054115.
  • A. Kumar, A. Chernatynskiy, and M. Hong, An ab initio investigation of the effect of alloying elements on the elastic properties and magnetic behavior of Ni3Al, Comput. Mater. Sci. 101 (2015), pp. 39–46.10.1016/j.commatsci.2015.01.007
  • Z. Wen, Y. Zhao, and H. Hou, The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X=Sc, Ti, V) under pressure and temperature: A first-principles study, Mater. Des. 114 (2017), pp. 398–403.10.1016/j.matdes.2016.11.005
  • R. Zhao, F. Wu, and X. Liu, First-principles study of Mn alloying into Fe3AlC: Towards the improvement of ductility, J. Alloys Compd. 681 (2016), pp. 283–292.10.1016/j.jallcom.2016.03.269
  • P. Shao, L. Ding, and D. Luo, Structural, electronic and elastic properties of the shape memory alloy NbRu: First-principle investigations, J. Alloys Compd. 695 (2017), pp. 3024–3029.10.1016/j.jallcom.2016.11.354
  • S. Liu, Y. Zhan, and J. Wu, Site preference of the alloying additions on mechanical and electronic properties of B2 ZrRu-based compounds, Comput. Mater. Sci. 117 (2016), pp. 1–6.
  • H. Li, Y. Chen, and H. Wang, First-principles study of mechanical and thermodynamic properties of Ti–Ga intermetallic compounds, J. Alloys Compd. 700 (2017), pp. 208–214.10.1016/j.jallcom.2017.01.052
  • K. Ali, A. Arya, and P.S. Ghosh, A first principles study of cohesive, elastic and electronic properties of binary Fe–Zr intermetallics, Comput. Mater. Sci. 112 (2016), pp. 52–66.10.1016/j.commatsci.2015.09.012
  • Y. Pan, Y. Lin, and X. Wang, Structural stability and mechanical properties of Pt–Zr alloys from first-principles, J. Alloys Compd. 643 (2015), pp. 49–55.10.1016/j.jallcom.2015.04.130
  • Y. Pan and Y. Lin, Influence of vacancy on the mechanical and thermodynamic properties of IrAl3 compound: A first-principles calculations, J. Alloys Compd. 684 (2016), pp. 171–176.10.1016/j.jallcom.2016.05.173
  • H. Chen, X. Lei, and J. Long, The elastic and thermodynamic properties of new antiperovskite-type superconductor CuNNi3 under pressure, Mater. Sci. Semicond. Process. 27 (2014), pp. 207–211.10.1016/j.mssp.2014.06.042
  • Y. Li, X. Ma, and Q. Liu, First-principles calculations of the structural, elastic and thermodynamic properties of tetragonal copper-titanium intermetallic compounds, J. Alloys Compd. 687 (2016), pp. 984–989.10.1016/j.jallcom.2016.06.186
  • L.P. Ding, P. Shao, and F.H. Zhang, Crystal structures, stabilities, electronic properties, and hardness of MoB2: First-principles calculations, Inorg. Chem. 55 (2016), pp. 7033–7040.10.1021/acs.inorgchem.6b00899
  • J. Du, B. Wen, and R. Melnik, First-principles studies on structural, mechanical, thermodynamic and electronic properties of Ni–Zr intermetallic compounds, Intermetallics 54 (2014), pp. 110–119.10.1016/j.intermet.2014.05.021
  • G. Yi, X. Zhang, and J. Qin, Mechanical, electronic and thermal properties of Cu5Zr and Cu5Hf by first-principles calculations, J. Alloys Compd. 640 (2015), pp. 455–461.10.1016/j.jallcom.2015.03.198
  • C. Xie, A.R. Oganov, and D. Li, Effects of carbon vacancies on the structures, mechanical properties, and chemical bonding of zirconium carbides: A first-principles study, Phys. Chem. Chem. Phys. 18 (2016), pp. 12299–12306.10.1039/C5CP07724A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.