203
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Pressure-induced structural phase transition in transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt): a DFT study

, &
Pages 541-559 | Received 26 Oct 2016, Accepted 22 Nov 2017, Published online: 13 Dec 2017

References

  • S. Ono, T. Kikegawa, and Y. Ohishi, A high-pressure and high-temperature synthesis of platinum carbide, Solid State Commun. 55 (2005), pp. 55–59.10.1016/j.ssc.2004.09.048
  • N.R. Sanjay Kumar, N.V. Chandra Shekar, N. Subramanian, M. Sekar, and P.C. Sahu, High pressure synthesis of Ruthenium Carbide, Proceedings of the 53rd DAE Solid State Physics Symposium, Mumbai, 2008.
  • Z. Zhao, M. Wang, L. Cui, J. He, D. Yu, and Y. Tian, Semiconducting superhard ruthenium monocarbide, J. Phys. Chem. 114 (2010), pp. 9961–9964.
  • C.Z. Fan, S.Y. Zeng, Z.J. Zhan, R.P. Liu, W.K. Wang, P. Zhang, and Y.G. Yao, Low compressible noble metal carbides with rock-salt structure: Ab initio total energy calculations of the elastic stability, Appl. Phys. Lett. 89 (2006), p. 071913.10.1063/1.2335571
  • C.Z. Fan, L.L. Sun, Y.X. Wang, R.P. Liu, S.Y. Zeng, and W.K. Wang, First-principles study on the structural, elastic and electronic properties of platinum carbide, Physica B 381 (2006), pp. 174–178.10.1016/j.physb.2006.01.346
  • N.I. Medvedeva and A.L. Ivanovskii, First-principles study of structural, elastic, and electronic properties of M23C6 and MC carbides (M = Ru, Rh, Pd, Os, Ir, and Pt), Phys. Status Solidi B 251 (2014), pp. 148–154.10.1002/pssb.v251.1
  • H.R. Soni, S.K. Gupta, and P.K. Jha, Ab initio total energy calculation of the dynamical stability of noble metal carbides, Physica B 406 (2010), pp. 3556–3561.
  • K.K. Korir, G.O. Amolo, N.W. Makau, and D.P. Joubert, First-principle calculations of the bulk properties of 4d transition metal carbides and nitrides in the rocksalt, zincblende and wurtzite structures, Diamond Relat. Mater. 20 (2011), pp. 157–164.10.1016/j.diamond.2010.11.021
  • V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, Trends in stability, elastic and electronic properties of cubic Rh, Ir, Pd and Pt carbides depending on carbon content: MC versus M4C from first-principles calculations, J. Phys. Chem. Solids 71 (2010), pp. 803–809.10.1016/j.jpcs.2010.02.005
  • L. Li, First principle calculations of a family of noble metal nitrides and carbides, Mod. Phys. Lett. 22 (2008), pp. 2937–2944.10.1142/S0217984908017424
  • J. Yang and F. Gao, First principles calculations of mechanical properties of cubic 5 transition metal monocarbides, Physica B 407 (2012), pp. 3527–3534.10.1016/j.physb.2012.05.016
  • J.C. Zheng, Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, and OsN, Phys. Rev. B 72 (2005), p. 052105.10.1103/PhysRevB.72.052105
  • M. Zhang, M. Wang, T. Cui, Y.M. Ma, Y.L. Niu, and G.T. Zou, Electronic structure, phase stability, and hardness of the osmium borides, carbides, nitrides, and oxides: first-principles calculations, J. Phys. Chem. Solids 69 (2008), pp. 2096–2102.10.1016/j.jpcs.2008.03.008
  • Z. Zhao, L. Xu, M. Wang, L. Cui, L. Wang, J. He, Z. Liu, and Y. Tian, Prediction of a conducting hard ductile cubic IrC, Phys. Status Solidi RRL 4 (2010), pp. 230–232.10.1002/pssr.201004282
  • Y.C. Liang, J.Z. Zhao, and B. Zhang, Electronic structure and mechanical properties of osmium borides, carbides and nitrides from first principles, Solid State Commun. 146 (2008), pp. 450–453.10.1016/j.ssc.2008.04.006
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993), pp. 558–561.10.1103/PhysRevB.47.558
  • G. Kresse and J. Furthmuller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996), pp. 15–50.10.1016/0927-0256(96)00008-0
  • P.E. Blochl, Projector augmented-wave method, Phys. Rev. B 50 (1994), pp. 17953–17979.10.1103/PhysRevB.50.17953
  • J.P. Perdew, S. Burke, and Matthias Ernzerhof generalized gradient approximation made Simple, Phys. Rev. Lett. 78 (1997), p. 1396.10.1103/PhysRevLett.78.1396
  • J.P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange correlation hole of a many-electron system, Phys. Rev. B 54 (2004), pp. 16533–16539.
  • J. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992), pp. 6671–6687.10.1103/PhysRevB.46.6671
  • G. Kresse and J. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999), pp. 1758–1775.10.1103/PhysRevB.59.1758
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.10.1103/PhysRevB.13.5188
  • J.F. Nye, Physical Properties of Crystal, Oxford University Press, Oxford, 1993.
  • S.Q. Wu, Z.F. Hou, and Z.Z. Zhu, Ab initio study on the structural and elastic properties of MAlSi (M=Ca, Sr, and Ba), Solid State Commun. 143 (2007), pp. 425–428.10.1016/j.ssc.2007.06.007
  • M. Kalay, H.H. Kart, and T. Çagin, Elastic properties and pressure induced transitions of ZnO polymorphs from first-principle calculations, J. Alloys Compd. 484 (2009), pp. 431–438.10.1016/j.jallcom.2009.04.116
  • M. Born, Dynamical Theory of Crystal Lattices, Clarendon, Oxford, 1956.
  • W. Voigt, Kristallphysik, Terubner, Leipzig, 1928.
  • A. Reuss and Z. Angew, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals, Math. Mech. 9 (1929), pp. 49–58.
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc., London, 65 (1952), pp. 349–354.
  • R. Rajeswarapalanichamy, G. Sudha Priyanga, M. Kavitha, S. Puvaneswari, and K. Iyakutti, Structural stability, electronic structure and mechanical properties of 4d transition metal nitrides TMN (TM=Ru, Rh, Pd), J. Phys. Chem. Solids 75 (2014), pp. 888–902.10.1016/j.jpcs.2014.03.012
  • Y.X. Wang, Ultra-incompressible and hard technetium carbide and rhenium carbide: first principles prediction, Phys. Status Solidi RRL 2 (2008), pp. 126–128.10.1002/(ISSN)1862-6270
  • A.L. Ivanovskii, Platinum group metal nitrides and carbides: synthesis, properties and simulation, Russ Chem Rev 78 (2009), pp. 303–318.10.1070/RC2009v078n04ABEH004036
  • J. Yang and F. Gao, Hardness calculations of 5d transition metal monocarbides with tungsten carbide structure, Phys. Status Solidi B 247 (2010), pp. 2161–2167.
  • V. Mankad, N. Rathod, S.D. Gupta, S.K. Gupta, and P.K. Jha, Stable structure of platinum carbides: a first principles investigation on the structure, elastic, electronic and phonon properties, Mater. Chem. Phys. 129 (2011), pp. 816–822.10.1016/j.matchemphys.2011.05.014
  • B. Abidri, M. Rabah, D. Rached, H. Baltache, H. Rached, I. Merzoug, and S. Djili, Full potential calculation of structural, elastic properties and high-pressure phase of binary noble metal carbide: ruthenium carbide, J. Phys. Chem. Solids 71 (2010), pp. 1780–1784.10.1016/j.jpcs.2010.09.014
  • R. Rajeswarapalanichamy and G. Sudha, Structural stability, electronic structure and mechanical properties of ZnN and CdN: a first principles study, Comput. Mater. Sci. 99 (2015), pp. 117–124.10.1016/j.commatsci.2014.12.012
  • D.A. Dzivenkoa, A. Zerra, R. Boehler, and R. Riedela, Equation of state of cubic hafnium(IV) nitride having Th3P4 -type structure, Solid State Commun. 139 (2006), pp. 255–258.10.1016/j.ssc.2006.06.020
  • P. Kroll, Hafnium nitride with thorium phosphide structure: physical properties and an assessment of the Hf-N, Zr-N, and Ti-N phase diagrams at high pressures and temperatures, Phys. Rev. Lett. 90 (2003), p. 125501.10.1103/PhysRevLett.90.125501
  • M. Mattesini, R. Ahuja, and B. Johansson, Cubic Hf3N4 and Zr3N4: a class of hard materials, Phys. Rev. B 68 (2003), p. 184108.10.1103/PhysRevB.68.184108
  • J.E. Lowther, Influence of nitrogen stoichiometry on properties of low-compressibility advanced nitrides, Physica B 358 (2005), pp. 72–76.10.1016/j.physb.2004.12.028
  • H.L. He, T. Sekine, T. Kobayashi, H. Hirosaki, and I. Suzuki, Shock-induced phase transition of β−Si3N4 to c−Si3N4, Phys. Rev. B 62 (2000), p. 11412.10.1103/PhysRevB.62.11412
  • R. Vogelgesang, M. Grimsditch, and J.S. Wallace, The elastic constants of single crystal β Si3N4, Appl. Phys. Lett. 76 (2000), pp. 982–984.10.1063/1.125913
  • Y.M. Li, M.B. Kruger, J.H. Nguyen, W.A. Caldwell, and R. Jeanloz, High pressure X-ray diffraction study of β-Si3N4, Solid State Commun. 103 (1997), pp. 107–112.10.1016/S0038-1098(97)00137-3
  • D. Errandonea, C.F. Roca, D.M. Garcia, A. Segura, O. Gomis, A. Munoz, P.R. Hernandez, J.L. Solano, S. Alconchel, and F. Sapina, X-ray High-pressure X-ray diffraction and ab initio study of Ni2Mo3N, Pd2Mo3N, Pt2Mo3N, Co3Mo3N, and Fe3Mo3N: two families of ultra-incompressible bimetallic interstitial nitrides, Phys. Rev. B 82 (2010), p. 174105.10.1103/PhysRevB.82.174105
  • H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures, Comput. Mater. Sci. 44 (2008), pp. 774–778.10.1016/j.commatsci.2008.05.026
  • S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954), pp. 833–843.
  • I.R. Shein, A.L. Ivanovski, Elastic properties of mono- and polycrystalline hexagonal AlB2 – like diborides of s, p and d metals from first-principles calculations, J. Phys. Condens. Matter 20 (2008), p. 415218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.