294
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique

, , &
Pages 1031-1052 | Received 30 Jun 2017, Accepted 19 Dec 2017, Published online: 15 Jan 2018

References

  • S.J. Zinkle and J.T. Busby, Structural materials for fission & fusion energy, Mater. Today 12 (2009), pp. 12–19.
  • K. Murty and I. Charit, Structural materials for Gen-IV nuclear reactors: Challenges and opportunities, J. Nucl. Mater. 383 (2008), pp. 189–195.
  • M.S. El-Genk and J.M. Tournier, A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems, J. Nucl. Mater. 340 (2005), pp. 93–112.
  • R.H. Cooper Jr, Potential refractory alloy requirements for space nuclear power applications, in Refractory Alloy Technology for Space Nuclear Power Applications, R.H. Cooper Jr and E.E. Hoffman, eds., U.S. Department of Energy, Technical Information Center, Oak ridge, 1984, pp. 14–17.
  • R. Gold and D. Harrod, Refractory metal alloys for fusion reactor applications, J. Nucl. Mater. 85 (1979), pp. 805–815.
  • S.J. Zinkle, F. Wiffen, M.S. El-Genk, and M.J. Bragg, Radiation effects in refractory alloys, AIP Conf. Proc. 699 (2004), pp. 733–740.
  • L.J. Pionke and J.W. Davis, Technical assessment of niobium alloys data base for fusion reactor applications, Tech. Rep., McDonnell Douglas Astronautics Co., St. Louis, MO, USA, 1979.
  • D. Goldberg, G. Dicker, and S. Worcester, Niobium and niobium alloys in nuclear power, Nucl. Eng. Des. 22 (1972), pp. 124–137.
  • S. Zinkle and N. Ghoniem, Operating temperature windows for fusion reactor structural materials, Fusion Eng. Des. 51 (2000), pp. 55–71.
  • K.J. Leonard, Radiation effects in refractory metals and alloys, in Comprehensive Nuclear Materials, Vol. 4, R. Konings, T. Allen, R. Stoller and S. Yamanaka, eds., Elsevier, Netherlands, 2012, pp. 181–213.
  • R.P. Tucker and S.M. Ohr, Direct observation of neutron irradiation damage in niobium, Philos. Mag. 16 (1967), pp. 643–646.
  • J. Mitchell, R. Van Konynenburg, M. Guinan, and C. Echer, Some electron microscopy observations of 14 MeV neutron damage in niobium, Philos. Mag. 31 (1975), pp. 919–927.
  • B. Loomis and S. Gerber, Swelling of 58Ni+ and 3He+ ion-irradiated Nb and Nb alloys, J. Nucl. Mater. 104 (1981), pp. 1193–1197.
  • B. Loomis, A. Taylor, and S. Gerber, Void swelling of Nb and Nb-1% Zr induced by 58Ni+ bombardment, J. Nucl. Mater. 56 (1975), pp. 25–37.
  • K.J. Leonard, J.T. Busby, and S.J. Zinkle, Influence of thermal and radiation effects on microstructural and mechanical properties of Nb-1Zr, J. Nucl. Mater. 414 (2011), pp. 286–302.
  • B. Loomis and S. Gerber, Effect of oxygen impurity on defect agglomeration and hardening of neutron-irradiated niobium, Acta Metall. 21 (1973), pp. 165–172.
  • S. Naidu, A.S. Gupta, P. Sen, and R. Bhandari, Defect studies in alpha-irradiated and deformed niobium by positron annihilation, Solid State Commun. 55 (1985), pp. 27–29.
  • I. Procházka, J. Čížek, V. Havránek, and W. Anwand, Defect studies of H+ implanted niobium, J. Alloys Compd. 645 (2015), pp. S69–S71.
  • G. Was, Fundamentals of Radiation Materials Science, Springer-Verlag, Berlin, 2007.
  • P. Mukherjee, A. Sarkar, P. Barat, S. Bandyopadhyay, P. Sen, S. Chattopadhyay, P. Chatterjee, S. Chatterjee, and M. Mitra, Deformation characteristics of rolled zirconium alloys: A study by X-ray diffraction line profile analysis, Acta Mater. 52 (2004), pp. 5687–5696.
  • G. Sharma, P. Mukherjee, A. Chatterjee, N. Gayathri, A. Sarkar, and J. Chakravartty, Study of the effect of alpha irradiation on the microstructure and mechanical properties of nanocrystalline Ni, Acta Mater. 61 (2013), pp. 3257–3266.
  • G. Williamson and W. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953), pp. 22–31.
  • T. Ungár and A. Borbély, The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis, Appl. Phys. Lett. 69 (1996), pp. 3173–3175.
  • T. Ungár, S. Ott, P. Sanders, A. Borbély, and J. Weertman, Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis, Acta. Mater. 46 (1998), pp. 3693–3699.
  • D. Balzar and H. Ledbetter, Voigt-function modeling in Fourier analysis of size-and strain-broadened X-ray diffraction peaks, J. Appl. Cryst. 26 (1993), pp. 97–103.
  • L. Lutterotti and P. Scardi, Simultaneous structure and size-strain refinement by the Rietveld method, J. Appl. Cryst. 23 (1990), pp. 246–252.
  • G. Ribárik, J. Gubicza, and T. Ungár, Correlation between strength and microstructure of ball-milled Al-Mg alloys determined by X-ray diffraction, Mater. Sci. Eng., A 387 (2004), pp. 343–347.
  • G. Ribárik, T. Ungár, and J. Gubicza, MWP-fit: a program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions, J. Appl. Cryst. 34 (2001), pp. 669–676.
  • G. Ribárik, Modeling of diffraction patterns based on microstructural properties, Eötvös Loránd University, Ph.D. diss., 2008.
  • J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, SRIM-the stopping and range of ions in matter (2010), Nucl. Instr. Meth. Phys. Res. B. 268 (2010), pp. 1818–1823.
  • M. Li, M. Kirk, P. Baldo, D. Xu, and B. Wirth, Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling, Philos. Mag. 92 (2012), pp. 2048–2078.
  • J.I. Langford and D. Louer, Powder diffraction, Rep. Prog. Phys. 59 (1996), pp. 131–234.
  • B. Warren and B. Averbach, The separation of cold-work distortion and particle size broadening in X-ray patterns, J. Appl. Phys. 23 (1952), pp. 497–497.
  • B.E. Warren, X-ray Diffraction, Dover Publications, New York, 1969.
  • R.A. Young, The Rietveld Method, Oxford University Press, New York, 1995.
  • L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction, Nucl. Instrum. Methods Phys. Res., Sect. B 268 (2010), pp. 334–340.
  • R.K. Nandi, H.K. Kuo, W. Schlosberg, G. Wissler, J.B. Cohen, and B. Crist Jr, Single-peak methods for Fourier analysis of peak shapes, J. Appl. Cryst. 17 (1984), pp. 22–26.
  • W.A. Dollase, Correction of intensities for preferred orientation in powder diffractometry: Application of the March model, J. Appl. Cryst. 19 (1986), pp. 267–272.
  • H.J. Bunge, Texture Analysis in Materials Science: Mathematical Methods, Butterworth-Heinemann, London, 1982.
  • A. Deb, P. Chatterjee, and S.S. Gupta, An X-ray diffraction study on dislocation microstructure of as-prepared Al-Al2O2 composites, Acta. Mater. 52 (2004), pp. 2755–2764.
  • M.A. Krivoglaz, Theory of X-ray and Thermal-neutron Scattering by Real Crystals, Plenum Press, New York, 1969.
  • M. Wilkens, Theoretical aspects of kinematical X-ray diffraction profiles from crystals containing dislocation distributions, in Fundamental Aspects of Dislocation Theory, J. Simmons, R. De Wit and R. Bullough, eds. U.S. National Bureau of Standards, Washington, 1970, pp. 1195–1221.
  • M. Wilkens, The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles, Phys. Status Solidi A 2 (1970), pp. 359–370.
  • T. Ungár, I. Dragomir, A. Revesz, and A. Borbély, The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice, J. Appl. Cryst. 32 (1999), pp. 992–1002.
  • A. Borbély, J. Dragomir-Cernatescu, G. Ribárik, and T. Ungár, Computer program ANIZC for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals, J. Appl. Cryst. 36 (2003), pp. 160–162.
  • J. Gubicza, X-ray Line Profile Analysis in Materials Science, IGI Global, Hershey, PA, 2014.
  • I. Dragomir and T. Ungár, The dislocations contrast factors of cubic crystals in the Zener constant range between zero and unity, Powder Diffr. 17 (2002), pp. 104–111.
  • T. Ungár, Dislocation model of strain anisotropy, Powder Diffr. 23 (2008), pp. 125–132.
  • I. Groma, X-ray line broadening due to an inhomogeneous dislocation distribution, Phys. Rev. B 57 (1998), pp. 7535–7542.
  • T. Ungár, Dislocation densities, arrangements and character from X-ray diffraction experiments, Mater. Sci. Eng. A 309 (2001), pp. 14–22.
  • T. Ungár, Microstructural parameters from X-ray diffraction peak broadening, Scripta Mater. 51 (2004), pp. 777–781.
  • R. Sizmann, The effect of radiation upon diffusion in metals, J. Nucl. Mater. 69 (1978), pp. 386–412.
  • M.I. Mendelev, S. Han, W. Son, G.J. Ackland, and D.J. Srolovitz Simulation of the interaction between Fe impurities and point defects in V, Phys. Rev. B. 76 (2007), pp. 214105–1–214105–11.
  • R. Kužel, Dislocation line broadening, Z. Kristallogr. Supp. 23 (2006), pp. 75–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.