212
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Gold nanoparticles produced by laser ablation in water and in graphene oxide suspension

, , , , , & show all
Pages 2205-2220 | Received 13 Jan 2018, Accepted 16 Apr 2018, Published online: 13 Jun 2018

References

  • S.E. Iyuke, T. A. Mamvura, K. Liu, V. Sibanda, M. Meyyappan, and V.K. Varadan, Process synthesis and optimization for the production of carbon nanostructures, Nanotechnology 20 (2009), pp. 16–20. doi: 10.1088/0957-4484/20/37/375602
  • J.I. Tapia and M. Quintana, Carbon nanostructures produced by liquid phase exfoliation of graphite in the presence of small organic molecules, Mesoporous Biomater 3 (2016), pp. 76–82.
  • M. Moradi, E. Solati, S. Darvishi, and D. Dorranian, Effect of aqueous ablation environment on the characteristics of ZnO nanoparticles produced by laser ablation, J. Clust. Sci. 27 (2016), pp. 127–138. doi: 10.1007/s10876-015-0915-5
  • E. Solati and D. Dorranian, Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water, J. Clust. Sci. 26 (2015), pp. 727–742. doi: 10.1007/s10876-014-0732-2
  • N. Ali, S. Bashir, U.I. Kalsoom, N. Begum, M. Rafique, and W. Husinsky, Effect of liquid environment on the titanium surface modification by laser ablation, Appl. Surf. Sci. 405 (2017), pp. 298–307. doi: 10.1016/j.apsusc.2017.02.047
  • N. Ali, S. Bashir, U.I. Kalsoom, M. Akram, and K. Mahmood, Effect of dry and wet ambient environment on the pulsed laser ablation of titanium, Appl. Surf. Sci. 270 (2013), pp. 49–57. doi: 10.1016/j.apsusc.2012.12.049
  • V. Amendola and M. Meneghetti, Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles, Phys. Chem. Chem. Phys. 11 (2009), pp. 3805–3821. doi: 10.1039/b900654k
  • S. Campuzano, M. Pedrero, G. Nikoleli, J. Pingarrón, and D. Nikolelis, Hybrid 2D-nanomaterials-based electrochemical immunosensing strategies for clinical biomarkers determination, Biosens Bioelectron. 89 (2017), pp. 269–279. doi: 10.1016/j.bios.2016.01.042
  • A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143 (2007), pp. 47–57. doi: 10.1016/j.ssc.2007.03.052
  • S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Synthesis of graphene-based nanosheet via chemical reduction of exfoliated graphite oxide, Carbon N. Y. 45 (2007), pp. 1558–1565. doi: 10.1016/j.carbon.2007.02.034
  • P. Wang, Z.G. Liu, X. Chen, F.L. Meng, J.H. Liu and X.J. Huang, UV irradiation synthesis of an Au–graphene nanocomposite with enhanced electrochemical sensing properties, J. Mater Chem. A. 1 (2013), pp. 9189–9195. doi: 10.1039/c3ta11155e
  • G. Moon, Y. Park, W. Kim, and W. Choi, Photochemical loading of metal nanoparticles on reduced graphene oxide sheets using phosphotungstate, Carbon N. Y. 49 (2011), pp. 3454–3462. doi: 10.1016/j.carbon.2011.04.042
  • R. Fabbro, J. Fournier, P. Ballard, D. Devaux and J. Virmount, Physical study of laser-produced plasma in confined geometry, J. Appl. Phy. 67 (1990), pp. 775–784. doi: 10.1063/1.346783
  • J.R. Kalluri, T. Arbneshi, S.A. Khan, A. Neely, P. Candice, B. Varisli, M. Washington, S. McAfee, B. Robinson, S. Banerjee, A.K. Singh, D. Senapati, and P.C. Ray, Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater, Angew Chem. Int. Ed. 48 (2009), pp. 1–5. doi: 10.1002/anie.200903958
  • A. Zubera, M. Purdeya, E. Schartnera, C. Forbes, B. van der Hoek, D. Giles, A. Abella, T. Monro, and H. Ebendorff-Heidepriem, Detection of gold nanoparticles with different sizes using absorption and fluorescence based method, Sensor Actuat B. 227 (2016), pp. 117–127. doi: 10.1016/j.snb.2015.12.044
  • M.A. García, Surface plasmons in metallic nanoparticles: fundamentals and applications, J. Phys. D: Appl. Phys. 44 (28) (2011), pp. 283001–281/43. doi: 10.1088/0022-3727/44/28/283001
  • P. Ghosh, G. Han, M. De, C.K. Kim, and V.M. Rotello, Gold nanoparticles in delivery applications, Adv Drug Deliver Rev 60 (2008), pp. 1307–1315. doi: 10.1016/j.addr.2008.03.016
  • L. Torrisi, N. Restuccia, S. Cuzzocrea, I. Paterniti, I. Ielo, S. Pergolizzi, M. Cutroneo and L. Kovacik, Laser-produced Au nanoparticles as X-ray contrast agents for diagnostic imaging, Gold Bullettin 50 (1) (2017), pp. 51–60. doi: 10.1007/s13404-017-0195-y
  • X. Qin, W. Lu, A.M. Asiri, A.O. Al-Youbi and X. Sun, Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles–reduced graphene oxide nanocomposites for glucose detection, Catalysis. Sci. Technol. 3 (2013), pp. 1027–1035. doi: 10.1039/c2cy20635h
  • X. Diez-Betriu, S. Alvarez- Garcia, C. Botas, P. Alavrez, J. Sanchez-Marcos, C. Prieto, R. Menendez, and A. de Andres, Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films, J. Mater. Chem. C. 1 (2013), pp. 6905–6912. doi: 10.1039/c3tc31124d
  • G.M. Herrera, A.C. Padilla and S.P. Hernandez-Rivera, Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation, Nanomaterials 3 (2013), pp. 158–172. doi: 10.3390/nano3010158
  • L. Torrisi, N. Restuccia and I. Paterniti, Gold nanoparticles by laser ablation for X-Ray imaging and protontherapy improvements, Recent Pat Nanotechnol 12 (1) (2018), pp. 59–69. doi: 10.2174/1872210511666170609093433
  • R. Popovtzer, A. Agrawal, N.A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, Targeted gold nanoparticles enable molecular CT imaging of cancer, Nano. Lett. 8 (12) (2008), pp. 4593–4596. doi: 10.1021/nl8029114
  • M. Neuber and A. Heilmann, Laser welding of polymer foils with gold nanoparticles as optical absorber, Adv. Sci. Lett. 4 (2011), pp. 3596–3598. doi: 10.1166/asl.2011.1993
  • L. Torrisi, Advanced polymer targets for TNSA regime producing 6MeV protons at 1016 W/cm2 laser intensity, Phys. Plasmas. 24 (2017), pp. 023111–0231/7. doi: 10.1063/1.4976134

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.