154
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Molecular dynamics study of self-diffusion in stoichiometric B2-NiAl crystals

ORCID Icon, ORCID Icon &
Pages 2257-2274 | Received 22 Feb 2018, Accepted 18 May 2018, Published online: 14 Jun 2018

References

  • A.C.F. Cocks, Constitutive modelling of powder compaction and sintering, Prog. Mater. Sci. 46 (2001), pp. 201–229. doi: 10.1016/S0079-6425(00)00017-7
  • S. Nosewicz, J. Rojek, S. Mackiewicz, M. Chmielewski, K. Pietrzak, and B. Romelczyk, The influence of hot pressing conditions on mechanical properties of nickel aluminide/alumina composite, J. Compos. Mater. 48 (2014), pp. 3577–3589. doi: 10.1177/0021998313511652
  • S. Nosewicz, J. Rojek, M. Chmielewski, and K. Pietrzak, Discrete element modeling and experimental investigation of hot pressing of intermetallic NiAl powder, Adv. Powder Technol. 28 (2017), pp. 1745–1759. doi: 10.1016/j.apt.2017.04.012
  • B.J. Henz, T. Hawa, and M. Zachariah, Molecular dynamics simulation of the kinetic sintering of Ni and Al nanoparticles, Mol. Simul. 35 (2009), pp. 804–811. doi: 10.1080/08927020902818021
  • J. Rojek, S. Nosewicz, M. Maździarz, P. Kowalczyk, K. Wawrzyk, and D. Lumelskyj, Modeling of a sintering process at various scales, Procedia Eng. 177 (2017), pp. 263–270. XXI; Polish-Slovak Scientific Conference Machine Modeling and Simulations MMS 2016. September 6-8, 2016, Hucisko, Poland. doi: 10.1016/j.proeng.2017.02.210
  • G.X. Chen, J.M. Zhang, and K.W. Xu, Self-diffusion of Ni in B2 type intermetallic compound NiAl, J. Alloys Compd. 430 (2007), pp. 102–106. doi: 10.1016/j.jallcom.2006.04.052
  • Y. Mishin and D. Farkas, Atomistic simulation of point defects and diffusion in B2 NiAl, Philos. Mag. A 75 (1997), pp. 169–185. doi: 10.1080/01418619708210289
  • Y. Mishin and D. Farkas, Atomistic simulation of point defects and diffusion in B2 NiAl, Philos. Mag. A 75 (1997), pp. 187–199. doi: 10.1080/01418619708210290
  • Y. Mishin and D. Farkas, Atomistic simulation of point defects and diffusion in B2 NiAl, Scr. Mater. 39 (1998), pp. 625–630. doi: 10.1016/S1359-6462(98)00206-1
  • Y. Mishin, A.Y. Lozovoi, and A. Alavi, Evaluation of diffusion mechanisms in NiAl by embedded-atom and first-principles calculations, Phys. Rev. B 67 (2003), p. 014201. doi: 10.1103/PhysRevB.67.014201
  • B. Meyer and M. Fähnle, Atomic defects in the ordered compound -NiAl: A combination of ab initio electron theory and statistical mechanics, Phys. Rev. B 59 (1999), pp. 6072–6082. doi: 10.1103/PhysRevB.59.6072
  • C. Jiang, L.Q. Chen, and Z.K. Liu, First-principles study of constitutional point defects in B2 NiAl using special quasirandom structures, Acta Mater. 53 (2005), pp. 2643–2652. doi: 10.1016/j.actamat.2005.02.026
  • K.A. Marino and E.A. Carter, The effect of platinum on defect formation energies in -NiAl, Acta Mater. 56 (2008), pp. 3502–3510. doi: 10.1016/j.actamat.2008.03.029
  • S. Divinski and Chr. Herzig, On the six-jump cycle mechanism of self-diffusion in NiAl, Intermetallics 8 (2000), pp. 1357–1368. doi: 10.1016/S0966-9795(00)00062-5
  • K.A. Marino and E.A. Carter, First-principles characterization of Ni diffusion kinetics in -NiAl, Phys. Rev. B 78 (2008), pp. 184105. doi: 10.1103/PhysRevB.78.184105
  • H. Wang, X. Gao, H. Ren, S. Chen, and Z. Yao, Diffusion coefficients of rare earth elements in fcc Fe: A first-principles study, J. Phys. Chem. Solids 112 (2018), pp. 153–157. doi: 10.1016/j.jpcs.2017.09.025
  • K. Lejaeghere, J. Jaeken, V. Van Speybroeck, and S. Cottenier, Ab initio based thermal property predictions at a low cost: An error analysis, Phys. Rev. B 89 (2014), p. 014304. doi: 10.1103/PhysRevB.89.014304
  • M. Forsblom, N. Sandberg, and G. Grimvall, Anharmonic effects in the heat capacity of Al, Phys. Rev. B 69 (2004), p. 165106. doi: 10.1103/PhysRevB.69.165106
  • B. Grabowski, L. Ismer, T. Hickel, and J. Neugebauer, Ab initio up to the melting point: anharmonicity and vacancies in aluminum, Phys. Rev. B 79 (2009), p. 134106. doi: 10.1103/PhysRevB.79.134106
  • A.Y. Lozovoi and Y. Mishin, Point defects in NiAl: The effect of lattice vibrations, Phys. Rev. B 68 (2003), p. 184113.
  • S. Yip, Handbook of Materials Modeling, Springer, Netherlands, 2007. https://books.google.pl/books/about/Handbook_of_Materials_Modeling.html?id=0sJaJ5juL9EC&redir_esc=y
  • C. Weinberger and G. Tucker, Multiscale Materials Modeling for Nanomechanics, Springer Series in Materials Science, Springer International Publishing, 2016. https://books.google.pl/books?id=T5rvDAAAQBAJ&dq=Multiscale+Materials+Modeling+for+Nanomechanics&hl=pl&source=gbs_navlinks_s
  • D.R. Alfonso and D.N. Tafen, Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study, J. Phys. Chem. C 119 (2015), pp. 11809–11817. doi: 10.1021/acs.jpcc.5b00733
  • A.V. Evteev, E.V. Levchenko, I.V. Belova, and G.E. Murch, Molecular dynamics simulation of surface segregation, diffusion and reaction phenomena in equiatomic Ni-Al systems, Phys. Met. Metall. 113 (2012), pp. 1202–1243. doi: 10.1134/S0031918X12130017
  • P. Kuhn, J. Horbach, F. Kargl, A. Meyer, and Th. Voigtmann, Diffusion and interdiffusion in binary metallic melts, Phys. Rev. B 90 (2014), p. 024309.
  • A. Kerrache, J. Horbach, and K. Binder, Molecular-dynamics computer simulation of crystal growth and melting in AlNi, EPL (Europhys. Lett.) 81 (2008), p. 58001. doi: 10.1209/0295-5075/81/58001
  • E.V. Levchenko, A.V. Evteev, I.V. Belova, and G.E. Murch, Molecular dynamics study of density, surface energy and self-diffusion in a liquid NiAl alloy, Comput. Mater. Sci 50 (2010), pp. 331–337. doi: 10.1016/j.commatsci.2010.08.022
  • E.V. Levchenko, A.V. Evteev, T. Ahmed, A. Kromik, R. Kozubski, I.V. Belova, Z.K. Liu, and G.E. Murch, Influence of the interatomic potential on thermotransport in binary liquid alloys: case study on NiAl, Philos. Mag. 96 (2016), pp. 3054–3074. doi: 10.1080/14786435.2016.1223893
  • A.V. Evteev, E.V. Levchenko, I.V. Belova, and G.E. Murch, Molecular dynamics simulation of diffusion in a (110) B2-NiAl film, Intermetallics 19 (2011), pp. 848–854. doi: 10.1016/j.intermet.2011.01.010
  • J. Duan, Atomistic simulations of diffusion mechanisms in stoichiometric NiAl, J. Phys. 18 (2006), p. 1381.
  • V. Turlo, F. Baras, and O. Politano, Comparative study of embedded-atom methods applied to the reactivity in the Ni-Al system, Modell. Simul. Mater. Sci. Eng. 25 (2017), p. 064002. doi: 10.1088/1361-651X/aa6cfa
  • M. Maździarz, J. Rojek, and S. Nosewicz, Estimation of micromechanical NiAl sintering model parameters from the molecular simulations, Int. J. Multiscale Comput. Eng. 15 (2017), pp. 343–358. doi: 10.1615/IntJMultCompEng.2017020289
  • H. Mehrer, Diffusion-Controlled Processes Diffusion in Solids: Fundamentals, Methods, Materials, Springer Series in Solid-State Sciences, Springer, Berlin, 2007.
  • D. Gupta, Diffusion Processes in Advanced Technological Materials, Springer, Berlin, 2010.
  • C. Herzig and S. Divinski, Essentials in diffusion behavior of nickel- and titanium-aluminides, Intermetallics 12 (2004), pp. 993–1003. doi: 10.1016/j.intermet.2004.03.005
  • V.P. Ramunni, Diffusion behavior in nickel-aluminum and aluminum-uranium diluted alloys, Comput. Mater. Sci 93 (2014), pp. 112–124. doi: 10.1016/j.commatsci.2014.06.039
  • Q. Xu and A. Van der Ven, Atomic transport in ordered compounds mediated by local disorder: Diffusion in , Phys. Rev. B 81 (2010), p. 064303.
  • P.A. Korzhavyi, A.V. Ruban, A.Y. Lozovoi, Y.K. Vekilov, I.A. Abrikosov, and B. Johansson, Constitutional and thermal point defects in NiAl, Phys. Rev. B 61 (2000), pp. 6003–6018. doi: 10.1103/PhysRevB.61.6003
  • M.I. Mendelev and Y. Mishin, Molecular dynamics study of self-diffusion in bcc Fe, Phys. Rev. B 80 (2009), p. 144111. doi: 10.1103/PhysRevB.80.144111
  • S. Frank, S. Divinski, U. Södervall, and C. Herzig, Ni tracer diffusion in the B2-compound NiAl: influence of temperature and composition, Acta Mater. 49 (2001), pp. 1399–1411. doi: 10.1016/S1359-6454(01)00037-4
  • C. Campbell and A. Rukhin, Evaluation of self-diffusion data using weighted means statistics, Acta Mater. 59 (2011), pp. 5194–5201. doi: 10.1016/j.actamat.2011.04.055
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO – The Open Visualization Tool (http://ovito.org/, Modelling Simul. Mater. Sci. Eng. 18 (2010), p. 015012.
  • W.R.Inc., Mathematica Version 11.0, Champaign, IL, 2017.
  • Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos, Embedded-atom potential for NiAl, Phys. Rev. B 65 (2002), p. 224114. doi: 10.1103/PhysRevB.65.224114
  • G.P. Pun and Y. Mishin, Development of an interatomic potential for the Ni-Al system, Philos. Mag. 89 (2009), pp. 3245–3267. doi: 10.1080/14786430903258184
  • E.B. Tadmor and R.E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University Press, 2011. https://books.google.pl/books/about/Modeling_Materials.html?id=5PLvc6tdsjcC&redir_esc=y
  • M. Maździarz, T.D. Young, P. Dłużewski, T. Wejrzanowski, and K.J. Kurzydlowski, Computer modelling of nanoindentation in the limits of a coupled molecular–statics and elastic scheme, J. Comput. Theor. Nanosci. 7 (2010), pp. 1172–1181. doi: 10.1166/jctn.2010.1469
  • M. Maździarz, T.D. Young, and G. Jurczak, A study of the affect of prerelaxation on the nanoindentation process of crystalline copper, Arch. Mech. 63 (2011), p. 533.
  • J. Cholewiński, M. Maździarz, G. Jurczak, and P. Dłużewski, Dislocation core reconstruction based on finite deformation approach and its application to 4H-SiC crystal, Int. J. Multiscale Comput. Eng. 12 (2014), pp. 411–421. doi: 10.1615/IntJMultCompEng.2014010679
  • M.I. Mendelev and B.S. Bokstein, Molecular dynamics study of self-diffusion in Zr, Philos. Mag. 90 (2010), pp. 637–654. doi: 10.1080/14786430903219020
  • K. Tapasa, A. Barashev, D. Bacon, and Y. Osetsky, Computer simulation of carbon diffusion and vacancy-carbon interaction in α-iron, Acta Mater. 55 (2007), pp. 1–11. doi: 10.1016/j.actamat.2006.05.029
  • X. Zhou, R. Jones, and J. Gruber, Molecular dynamics simulations of substitutional diffusion, Comput. Mater. Sci 128 (2017), pp. 331–336. doi: 10.1016/j.commatsci.2016.11.047

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.