310
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Forty years of the Staebler–Wronski effect

&
Pages 2512-2528 | Received 21 Mar 2018, Accepted 17 Jun 2018, Published online: 09 Jul 2018

References

  • R.C. Chittick, J.H. Alexander, and H.F. Sterling, The preparation and properties of amorphous silicon, J. Electrochem. Soc. 116 (1969), pp. 77–81. doi: 10.1149/1.2411779
  • W.E. Spear and P.G. Le Comber, Substitutional doping of amorphous silicon, Solid State Commun. 17 (1975), pp. 1193–1196. doi: 10.1016/0038-1098(75)90284-7
  • D.L. Staebler and C.R. Wronski, Reversible conductivity changes in discharge-produced amorphous Si, Appl. Phys. Lett. 31 (1977), pp. 292–294. doi: 10.1063/1.89674
  • K.K. Gleason, M.A. Petrich, and J.A. Reimer, Hydrogen microstructure in amorphous hydrogenated silicon, Phys. Rev. B 36 (1987), pp. 3259–3267. doi: 10.1103/PhysRevB.36.3259
  • T. Su, P.C. Taylor, S. Chen, R.S. Crandall, and A.H. Mahan, Molecular hydrogen in amorphous silicon revisited, J. Non-Cryst. Solids 266–269 (2000), pp. 195–200. doi: 10.1016/S0022-3093(99)00814-5
  • P. Stradins and H. Fritzsche, Light-induced metastable changes in defect density and photoconductivity of a-Si:H between 4.2 and 300 K, J. Non-Cryst. Solids 198–200 (1996), pp. 432–435. doi: 10.1016/0022-3093(95)00716-4
  • M. Stutzmann, W.B. Jackson, and C.C. Tsai, Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study, Phys. Rev. B 32 (1985), pp. 23–47. doi: 10.1103/PhysRevB.32.23
  • H. Fritzsche, A new perspective on an old problem: the Staebler–Wronski effect, Mater. Res. Soc. Symp. Proc. 1245 (2010), p. A14.01. doi: 10.1557/PROC-1245-A14-01
  • P. Stradins, Light-induced degradation in a-Si:H and its relation to defect creation, Sol. Energy Mater. Sol. Cells 78 (2003), pp. 349–367. doi: 10.1016/S0927-0248(02)00442-7
  • P. Stradins, M. Kondo, and A. Matsuda, Thermal stability of light-induced defects in hydrogenated amorphous silicon: effect on defect creation kinetics and role of network microstructure, J. Non-Cryst. Solids 354 (2008), pp. 2144–2148. doi: 10.1016/j.jnoncrysol.2007.09.011
  • S. Bauer, B. Schroeder, and H. Oechsner, The effect of hydrogen dilution on the microstructure and stability of a-Si:H films prepared by different techniques, J. Non-Cryst. Solids 227–230 (1998), pp. 34–38. doi: 10.1016/S0022-3093(98)00164-1
  • A. Hamed and H. Fritzsche, The origin of persistent photoconductance in doping-modulated and compensated a-Si:H, J. Non-Cryst. Solids 114 (1989), pp. 717–719. doi: 10.1016/0022-3093(89)90698-4
  • L.K. Wagner and J.C. Grossman, Microscopic description of light induced defects in amorphous silicon solar cells, Phys. Rev. Lett 101 (2008), p. 265501. doi: 10.1103/PhysRevLett.101.265501
  • T. Nishimoto, M. Takai, H. Miyahara, M. Kondo, and A. Matsuda, Amorphous silicon solar cells deposited at high growth rate, J. Non-Cryst. Solids 299–302 (2002), pp. 1116–1122. doi: 10.1016/S0022-3093(02)00942-0
  • G. Lucovsky, R.J. Nemanich, and J.C. Knights, Structural interpretation of the vibrational spectra of a-Si: H alloys, Phys. Rev. B 19 (1979), pp. 2064–2073. doi: 10.1103/PhysRevB.19.2064
  • D.L. Williamson, Nanostructure of a-Si:H and related materials by small-angle X-Ray scattering, Mater. Res. Soc. Symp. Proc. 377 (1995), pp. 251–262. doi: 10.1557/PROC-377-251
  • D.L. Williamson, Microstructure of amorphous and microcrystalline Si and SiGe alloys using X-rays and neutrons, Sol. Energy Mater. Sol. Cells 78 (2003), pp. 41–84. doi: 10.1016/S0927-0248(02)00433-6
  • S. Guha, J. Yang, S.J. Jones, Y. Chen, and D.L. Williamson, Effect of microvoids on initial and light-degraded efficiencies of hydrogenated amorphous silicon alloy solar cells, Appl. Phys. Lett. 61 (1992), pp. 1444–1446. doi: 10.1063/1.107564
  • M. Fehr, A. Schnegg, B. Rech, O. Astakhov, F. Finger, R. Bittl, C. Teutloff, and K. Lips, Metastable defect formation at microvoids identified as a source of light-induced degradation in a-Si:H, Phys. Rev. Lett. 112 (2014), p. 066403. doi: 10.1103/PhysRevLett.112.066403
  • D.A. Drabold, Topics in the theory of amorphous materials, Eur. Phys. J. B 68 (2009), pp. 1–21. doi: 10.1140/epjb/e2009-00080-0
  • E. Spanakis, Mechanical properties and their photo-induced changes in hydrogenated amorphous silicon: study of the role of hydrogen, Ph.D. diss., Univeristy of Crete, Greece, 2001.
  • M. Vanecek, J. Fric, A. Poruba, A.H. Mahan, and R.S. Crandall, Influence of annealing above the deposition temperature on metastability in amorphous silicon, J. Non-Cryst. Solids 198–200 (1996), pp. 478–481. doi: 10.1016/0022-3093(95)00742-3
  • S.B. Zhang and H.M. Branz, Hydrogen above saturation at silicon vacancies: H-pair reservoirs and metastability sites, Phys. Rev. Lett. 87 (2001), p. 105503. doi: 10.1103/PhysRevLett.87.105503
  • S.C. Agarwal, Role of heterogeneities in Staebler–Wronski effect, Philos. Mag. 93 (2013), pp. 4213–4220. doi: 10.1080/14786435.2013.824626
  • J.A. Reimer, R.W. Vaughan, and J.C. Knights, Proton magnetic resonance spectra of plasma-deposited amorphous Si: H films, Phys. Rev. Lett. 44 (1980), pp. 193–196. doi: 10.1103/PhysRevLett.44.193
  • R.A. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge, 1991.
  • L. Ley, Photoemission and Optical Properties, in the Physics of Hydrogenated Amorphous Silicon II, J.D. Joannopoulos and G. Lukovsky, eds., Springer, Berlin, 1984, pp. 61–168.
  • K.M.H. Maessen, M.J.M. Pruppers, J. Bezemer, F.H.P.M. Habraken, and W.F. van der Weg, Hydrogen content and the optical band gap in amorphous silicon, Mater. Res. Soc. Symp. Proc. 95 (1987), pp. 201–205. doi: 10.1557/PROC-95-201
  • S.C. Agarwal, Influence of heterogeneities on the electronic properties of hydrogenated amorphous silicon, Philos. Mag. 94 (2014), pp. 1642–1660. doi: 10.1080/14786435.2014.893064
  • H. Fritzsche, Optical and electrical energy gaps in amorphous semiconductors, J. Non-Cryst. Solids 6 (1971), pp. 49–71. doi: 10.1016/0022-3093(71)90015-9
  • H. Fritzsche, A general expression for the thermoelectric power, Solid State Commun. 9 (1971), pp. 1813–1815. doi: 10.1016/0038-1098(71)90096-2
  • N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed., Oxford University Press, Clarendon, 1979.
  • H. Overhof and W. Beyer, Electronic transport in hydrogenated amorphous silicon, Philos. Mag. B 47 (1983), pp. 377–392. doi: 10.1080/13642812.1983.10590676
  • H. Overhof and W. Beyer, A model for the electronic transport in hydrogenated amorphous silicon, Philos. Mag. B 43 (1981), pp. 433–450. doi: 10.1080/01418638108222108
  • H. Fritzsche, Photo-induced structural changes associated with the Staebler–Wronski effect in hydrogenated amorphous silicon, Solid State Commun. 94 (1995), pp. 953–955. doi: 10.1016/0038-1098(95)00220-0
  • H.M. Branz and M. Silver, Potential fluctuations due to inhomogeneity in hydrogenated amorphous silicon and the resulting charged dangling-bond defects, Phys. Rev. B 42 (1990), pp. 7420–7428. doi: 10.1103/PhysRevB.42.7420
  • D. Hauschildt, W. Fuhs, and H. Mell, Optically induced potential fluctuations in a-Si:H films, Phys. Stat. Solidi (B) 111 (1982), pp. 171–176. doi: 10.1002/pssb.2221110118
  • P. Agarwal and S.C. Agarwal, Thermal equilibrium, the Staebler–Wronski effect and potential fluctuations in lithium-doped hydrogenated amorphous silicon, Philos. Mag. B 80 (2000), pp. 1327–1346. doi: 10.1080/13642810008209792
  • P. Agarwal and S.C. Agarwal, Electronic transport and metastabilities in P-doped a-Si:H, J. Appl. Phys. 81 (1997), pp. 3214–3219. doi: 10.1063/1.364152
  • J. Isoya, S. Yamasaki, H. Okushi, A. Matsuda, and K. Tanaka, Electron-spin-echo envelope-modulation study of the distance between dangling bonds and hydrogen atoms in hydrogenated amorphous silicon, Phys. Rev. B 47 (1993), pp. 7013–7024. doi: 10.1103/PhysRevB.47.7013
  • H.R. Park, J.Z. Liu, P.R. Cabarrocas, A. Maruyama, M. Isomura, S. Wagner, J.R. Abelson, and F. Finger, Dependence of the saturated light-induced defect density on macroscopic properties of hydrogenated amorphous silicon, Appl. Phys. Lett. 57 (1990), pp. 1440–1442. doi: 10.1063/1.103364
  • A. Skumanich, N.M. Amer, and W.B. Jackson, Effects of dopants and defects on light-induced metastable states in a-Si:H, Phys. Rev. B 31 (1985), pp. 2263–2269. doi: 10.1103/PhysRevB.31.2263
  • E. Stratakis, E. Spanakis, H. Fritzsche, and P. Tzanetakis, Stress and internal friction associated with light-induced structural changes of a-Si:H deposited on crystalline silicon microcantilevers, J. Non-Cryst. Solids 266–269 (2000), pp. 506–510. doi: 10.1016/S0022-3093(99)00798-X
  • P. Tzanetakis, Metastable volume changes of hydrogenated amorphous silicon and silicon–germanium alloys produced by exposure to light, Sol. Energy Mater. Sol. Cells 78 (2003), pp. 369–389. doi: 10.1016/S0927-0248(02)00443-9
  • A. Yelon, A. Rochefort, S. Sheng, and E. Sacher, Irradiation-induced structural changes in hydrogenated amorphous silicon as measured by X-ray photoemission spectroscopy, Sol. Energy Mater. Sol. Cells 78 (2003), pp. 391–398. doi: 10.1016/S0927-0248(02)00444-0
  • Z. Yiping, Z. Dianlin, K. Guanglin, P. Guangqin, and L. Xianbo, Evidence for light-induced increase of Si–H bonds in undoped a-Si:H, Phys. Rev. Lett 74 (1995), pp. 558–561. doi: 10.1103/PhysRevLett.74.558
  • J. Fan and J. Kakalios, Light-induced changes of the non-Gaussian 1/f noise statistics in doped hydrogenated amorphous silicon, Philos. Mag. B 69 (1994), pp. 595–608. doi: 10.1080/01418639408240131
  • P. Hari, P.C. Taylor, and R.A. Street, Effect of light soaking on the local motion of hydrogen in hydrogenated amorphous silicon, Mater. Res. Soc. Symp. Proc. 336 (1994), pp. 329–334.
  • H. Fritzsche, Early research on amorphous silicon: errors and missed opportunities, Mater. Res. Soc. Symp. Proc. 609 (2000), p. A17.1.1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.