152
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Oxidation behavior with quantum dots formation from amorphous GaAs thin films

, & ORCID Icon
Pages 2965-2981 | Received 27 Jul 2018, Accepted 10 Aug 2018, Published online: 23 Aug 2018

References

  • X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun, and J.J. Du, Crystalline gallium oxide nanowires: intensive blue light emitters, Chem. Phys. Lett. 328 (2000), pp. 5–9. doi: 10.1016/S0009-2614(00)00899-X
  • M. Rebien, W. Henrion, M. Hong, J. Mannaerts, and M. Fleischer, Optical properties of gallium oxide thin films, Appl. Phys. Lett. 81 (2002), pp. 250–252. doi: 10.1063/1.1491613
  • M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates, Appl. Phys. Lett. 100 (2012), p. 013504. doi: 10.1063/1.3674287
  • M.L. Huang, Y.C. Chang, C.H. Chang, Y.J. Lee, P. Chang, J. Kwo, T.B. Wu, and M. Hong, Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3, Appl. Phys. Lett. 87 (2005), p. 252104. doi: 10.1063/1.2146060
  • M. Rojas-Lopez, J.M. Gracia-Jimenez, M.A. Vidal, H. Navarro-Contreras, R. Silva-González, and E. Gómez, Raman study of luminescent spark processed porous GaAs, J. Vac. Sci. Technol. 19 (2001), pp. 622–627. doi: 10.1116/1.1366709
  • D. Lezal and K. Konak, The characterization of the infrared absorption spectra of the vitreous, cubic and monoclinic modification of As2O3. J. Non-Cryst. Solids. 192–193 (1995), pp. 187–190. doi: 10.1016/0022-3093(95)00350-9
  • H. de Thé and Z. Chen, Acute promyelocytic leukaemia: novel insights into the mechanisms of cure, Nature Rev.: Cancer. 10 (2010), pp. 775–783.
  • Y. Takagaki, E. Wiebicke, M. Ramsteiner, L. Daweritz, and K.H. Ploog, Spontaneous growth of arsenic oxide micro-crystals on chemically etched MnAs surfaces, Appl. Phys. A. 76 (2003), pp. 837–840. doi: 10.1007/s00339-002-2068-2
  • L.G. Qauagliano, Detection of As2O3 arsenic oxide on GaAs surface by Raman scattering, Appl. Surf. Sci. 153 (2000), pp. 240–244. doi: 10.1016/S0169-4332(99)00355-4
  • C.M. Finnie and P.W. Bohn, Near-field photoluminescence of microcrystalline arsenic oxides produced in anodically processed gallium arsenide, Appl. Phys. Lett. 74 (1999), pp. 1096–1098. doi: 10.1063/1.123454
  • X. Li and P.W. Bohn, Arsenic oxide microcrystals in anodically processed GaAs electrochemical growth, spectroscopy, and morphology, J. Electrochem. Soc. 147 (2000), pp. 1740–1746. doi: 10.1149/1.1393427
  • Y. Mizokawa, H. Iwasaki, R. Nishitani, and S. Nakmura, Quantitative chemical depth profiles of anodic oxide on GaAs obtained by X-Ray photoelectron spectroscopy, J. Electrochem. Soc. 126 (1979), pp. 1370–1374. doi: 10.1149/1.2129281
  • A. Smida, F. Laatar, M. Hassen, and H. Ezzaouia, Structural and optical properties of vapor-etched porous GaAs, J. Lumin. 176 (2016), pp. 118–123. doi: 10.1016/j.jlumin.2016.03.022
  • W.M. Lau, T.C. Chan, and R.P. Bult, The formation of surface arsenic oxide crystals on GaAs, Mater Lett. 5 (1987), pp. 88–93. doi: 10.1016/0167-577X(87)90082-6
  • F. Meirer, D. Giubertoni, E. Demenev, L. Vanzetti, S. Gennaro, M. Fedrizzi, G. Pepponi, A. Mehta, P. Pianetta, G. Steinhauser, et al., Formation of arsenolite crystals at room temperature after very high dose arsenic implantation in silicon, Appl. Phys. Lett. 101 (2012), p. 232107. doi: 10.1063/1.4769446
  • A. Udupa, X. Yu, L. Edwards, and L.L. Goddard, Selective area formation of arsenic oxide-rich octahedral microcrystals during photochemical etching of n-type GaAs, Opt Mater Express. 8 (2018), pp. 289–294. doi: 10.1364/OME.8.000289
  • Y.A. Bioud, A. Boucherif, A. Belarouci, E. Paradis, D. Drouin, and R. Ares, Chemical composition of nanoporous layer formed by electrochemical etching of p-type GaAs, Nanoscale Res. Lett. 11 (2016), pp. 1–8. doi: 10.1186/s11671-016-1642-z
  • A.J. Henegar, A.J. Cook, P. Dang, and T. Gougousi, Native oxide transport and removal during atomic layer deposition of TiO2 films on GaAs(100) surfaces, ACS Appl. Mater. Interfaces. 8 (2016), pp. 1667–1675. doi: 10.1021/acsami.5b08998
  • X. Mei, D. Kim, H.E. Ruda, and Q.X. Guo, Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks, Appl. Phys. Lett. 81 (2002), pp. 361–363. doi: 10.1063/1.1484554
  • A. Kumari, J.B. Hatch, C. Kim, B. Barman, J. Kwon, A. Petrou, H. Zeng, and H. Luo, Pattern transfer to GaAs substrates and epitaxial growth of GaAs nanostructures using self-organized porous templates, J. Vac. Sci. Technol. B 34 (2016), p. 021805. doi: 10.1116/1.4943920
  • B. Parida, J. Choi, G. Lim, S. Park, and K. Kim, Formation of nanotextured surfaces on microtextured si solar cells by metal-assisted chemical etching process, J. Nanosci. Nanotechnol. 14 (2014), pp. 9224–9231. doi: 10.1166/jnn.2014.10129
  • B. Parida, J. Choi, S. Palei, S.J. Kwak, and K. Kim, Nanotextured Si solar cells on microtextured pyramidal surfaces by silver-assisted chemical etching process, Trans. Electr. Electron. Mater. 16 (2015), pp. 212–220. doi: 10.4313/TEEM.2015.16.4.212
  • G. Landgren, R. Ludke, Y. Jugnet, J.F. Moran, and F.J. Himsel, The oxidation of GaAs(110): a reevaluation, J. Vacuum Sci. Technol. 2 (1984), pp. 351–358. doi: 10.1116/1.582823
  • S. Sampath, M. Shestakova, P. Maydannik, T. Ivanova, T. Homola, A. Bryukvin, M. Sillanpaa, R. Nagumothu, and V. Alagan, Photoelectrocatalytic activity of ZnO coated nano-porous silicon by atomic layer deposition, RSC Adv. 6 (2016), pp. 25173–25178. doi: 10.1039/C6RA01655C
  • R.R. Campomanes, J.H. Dias da Silva, J. Vilcarromero, and L.P. Cardoso, Crystallization of amorphous GaAs films prepared onto different substrates, J. Non-Cryst. Solids. 299–302 (2002), pp. 788–792. doi: 10.1016/S0022-3093(01)00983-8
  • H. Stetter, Neues aus der chemie der organischen ringsysteme mit urotropin(adamantan)-struktur, Angew. Chem. 74 (1962), pp. 361–374. doi: 10.1002/ange.19620741102
  • F. Pertlik, Strukturverfeinerung von kubischem As2O3 (arsenolith) mit einkristalldaten, Czech. J. Phys. 28 (1978), pp. 170–176. doi: 10.1007/BF01591036
  • P. Ballirano and A. Maras, Refinement of the crystal structure of arsenolite, AS2O3, Z. Kristallogr.: NCS. 217 (2002), pp. 177–178.
  • K. Momma and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr. 41 (2008), pp. 653–658. doi: 10.1107/S0021889808012016
  • T. Ishikawa and H. Ikoma, X-ray photoelectron spectroscopic analysis of the oxide of GaAs, Jpn. J. Appl. Phys. 31 (1992), pp. 3981–3987. doi: 10.1143/JJAP.31.3981
  • G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, Oxides on GaAs and InAs surfaces: An x-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers, Phys. Rev. B. 49 (1994), pp. 11159–11167. doi: 10.1103/PhysRevB.49.11159
  • T.B. Ng, D.B. Janes, D. McInturff, and J.M. Woodall, Inhibited oxidation in low-temperature grown GaAs surface layers observed by photoelectron spectroscopy, Appl. Phys. Lett. 69 (1996), pp. 3551–3553.
  • A. Matsumoto, Y. Koyama, A. Togo … I. Tanaka, Electronic structures of dynamically stable As2O3, Sb2O3, and Bi2O3 crystal polymorphs. Phys. Rev. B 83 (2011), pp. 214110. doi: 10.1103/PhysRevB.83.214110
  • E.O. Chukwuocha, M.C. Onyeaju, and T.S.T. Harry, Theoretical studies on the effect of confinement on quantum dots using the brus equation, World J. Condens. Matter. Phys. 2 (2012), pp. 96–100. doi: 10.4236/wjcmp.2012.22017
  • K. Kim, Visible light emissions and single-electron tunneling from silicon quantum dots embedded in Si-rich SiO2 deposited in plasma phase, Phys. Rev. B. 57 (1998), pp. 13072–13076. doi: 10.1103/PhysRevB.57.13072
  • M. Fukuda, K. Nakagawa, S. Miyazaki, and M. Hirose, Resonant tunneling through a self-assembled Si quantum dot, Appl. Phys. Lett. 70 (1997), pp. 2291–2293. doi: 10.1063/1.118816
  • H. Ueno, K. Moriyasu, Y. Wada, S. Osako, H. Kubo, N. Mori, and C. Hamaguchi, Conductance through zigzag quantum dots arrays, Microelectron. Eng. 47 (1999), pp. 127–129. doi: 10.1016/S0167-9317(99)00168-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.