489
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Work hardening and recovery in fully lamellar TiAl: relative activity of deformation systems

ORCID Icon, , , &
Pages 148-180 | Received 18 Apr 2018, Accepted 26 Sep 2018, Published online: 06 Nov 2018

References

  • J. Lindemann, C. Buque, and F. Appel, Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy. Acta Mater. 54 (2006), pp. 1155–1164. doi: 10.1016/j.actamat.2005.10.043
  • B. Bewlay, S. Nag, and A. Suzuki, TiAl alloys in commercial aircraft engines. Mater. High Temp. 33 (2016), pp. 549–559. doi: 10.1080/09603409.2016.1183068
  • F. Appel, J. Paul, and M. Oehring, Gamma Titanium Aluminide Alloys, Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany, 2011.
  • F. Appel, U. Sparka, and R. Wagner, Work hardening and recovery of gamma base titanium aluminides, Intermetallics 7 (1999), pp. 325–334. doi: 10.1016/S0966-9795(98)00109-5
  • J. Paul, F. Appel, Work hardening and recovery mechanisms in gamma-based titanium aluminides. Metall. Mater. Trans. A 34 (2003), pp. 2103–2111. doi: 10.1007/s11661-003-0275-x
  • E. Héripré, D. Caldemaison, and A. Roos, Microstrain analysis of titanium aluminides. Mater. Sci. Forum 638-642 (2010), pp. 1330–1335. doi: 10.4028/www.scientific.net/MSF.638-642.1330
  • C. Içöz, L. Patriaca, and M. Filipini, Strain accumulation in TiAl intermetallics via high-resolution digital image correlation (DIC). Procedia Eng. 74 (2014), pp. 443–448. doi: 10.1016/j.proeng.2014.06.295
  • T. Edwards, F.D. Gioacchino, R. Muñoz-Moreno et al., The interaction of borides and longitudinal twinning in polycrystalline TiAl alloys. Acta Mater. 140 (2017), pp. 305–316. doi: 10.1016/j.actamat.2017.08.055
  • D. Hu, A. Huang, H. Jiang, N. Mota-Solis, and X. Wu, Pre-yielding and pre-yield cracking in TiAl-based alloys, Intermetallics 14 (2006), pp. 82–90. doi: 10.1016/j.intermet.2005.04.016
  • D.M. Dimiduk, P.M. Hazzledine, and T.A. Parthasarathy, The role of grain size and selected microstructural parameters in strengthening fully lamellar TiAl alloys. Metall. Mater. Trans. A 29 (1998), pp. 37–47. doi: 10.1007/s11661-998-0157-3
  • Y.W. Kim, Strength and ductility in TiAl alloys, Intermetallics 6 (1998), pp. 623–628. doi: 10.1016/S0966-9795(98)00037-5
  • R. Botten, X. Wu, and D. Hu, The significance of acoustic emission during stressing of TiAl-based alloys. Part I: Detection of cracking during loading up in tension. Acta Mater. 49 (2001), pp. 1687–1691. doi: 10.1016/S1359-6454(01)00091-X
  • T. Fujiwara, A. Nakamura, and M. Hosomi, Deformation of polysynthetically twinned crystals of TiAl with a nearly stoichiometric composition. Philos. Mag. A 61(4) (1990), pp. 591–606. doi: 10.1080/01418619008231937
  • H. Uhlenhut, Ursachen plastischer Anisotropie von γ-TiAl-Basislegierungen, Ph.D. thesis, Technische Universität Hamburg-Harburg, 1999.
  • A. Bartels and H. Uhlenhut, Anisotropy of plastic flow in strongly textured γ-TiAl-based alloys, Intermetallics 6 (1998), pp. 685–688. doi: 10.1016/S0966-9795(98)00029-6
  • K. Kishida, H. Inui, and M. Yamaguchi, Deformation of lamellar structure in TiAl-Ti3 Al two-phase alloys. Philos. Mag. A 78 (1998), pp. 1–28. doi: 10.1080/014186198253660
  • M. Rester, F. Fischer, and C. Kirchlechner, Deformation mechanisms in micron-sized PST TiAl compression samples: Experiment and model. Acta Mater. 59 (2011), pp. 3410–3421. doi: 10.1016/j.actamat.2011.02.016
  • A. Palomares-García, I. Sabirov, and M. Pérez-Prado, Effect of nanoscale thick lamellae on the micromechanical response of a TiAl alloy. Scr. Mater. 139 (2017), pp. 17–21. doi: 10.1016/j.scriptamat.2017.06.002
  • A. Palomares-García, M. Pérez-Prado, and J. Molina-Aldareguia, Effect of lamellar orientation on the strength and operating deformation mechanisms of fully lamellar TiAl alloys determined by micropillar compression. Acta Mater. 123 (2017), pp. 102–114. doi: 10.1016/j.actamat.2016.10.034
  • T. Edwards, F.D. Gioacchino, and R. Muñoz-Moreno, Deformation of lamellar TiAl alloys by longitudinal twinning. Scr. Mater. 118 (2016), pp. 46–50. doi: 10.1016/j.scriptamat.2016.03.004
  • C. Zambaldi, F. Roters, and D. Raabe, Analysis of the plastic anisotropy and pre-yielding of (γ/)-phase titanium aluminide microstructures by crystal plasticity simulation, Intermetallics 19 (2011), pp. 820–827. doi: 10.1016/j.intermet.2011.01.012
  • A. Roos, J.L. Chaboche, and L. Gélébart, Multiscale modelling of titanium aluminides. Int. J. Plasticity 20 (2004), pp. 811–830. doi: 10.1016/j.ijplas.2003.08.005
  • B. Kad, M. Dao, and R. Asaro, Numerical simulations of plastic deformation and fracture effects in two phase γ-TiAl + -Ti3Al lamellar microstructures. Philos. Mag. A 71(3) (1995), pp. 567–604 doi: 10.1080/01418619508244469
  • R. Lebensohn, Modelling the role of local correlations in polycrystal plasticity using viscoplastic self-consistent schemes. Model. Simul. Mater. Sci. Eng. 7 (1999), pp. 739–746. doi: 10.1088/0965-0393/7/5/306
  • R. Brokmann, Analysis of elastic-plastic deformation in TiAl polycrystals. Int. J. Plasticity 19 (2003), pp. 1749–1772. doi: 10.1016/S0749-6419(02)00102-X
  • M. Grujicic, G. Cao, and S. Batchu, Crystal plasticity-based finite element analysis of deformation and fracture of polycrystalline lamellar γ-TiAl +-Ti3Al alloys. J. Mater. Sci. 38 (2003), pp. 307–322. doi: 10.1023/A:1021117716709
  • M. Werwer and A. Cornec, The role of superdislocations for modeling plastic deformation of lamellar TiAl, Int. J. Plasticity 22 (2006), pp. 1683–1698. doi: 10.1016/j.ijplas.2006.02.005
  • S. Schlögl and F. Fischer, Numerical simulation of yield loci for PST crystals of TiAl, Mater. Sci. Eng. A 239-240 (1997), pp. 790–803. doi: 10.1016/S0921-5093(97)00668-0
  • M. Kabir, L. Chernova, and M. Bartsch, Numerical investigation of room-temperature deformation behavior of a duplex type γTiAl alloy using a multi-scale modeling approach. Acta Mater. 58 (2010), pp. 5834–5847. doi: 10.1016/j.actamat.2010.06.058
  • E. Parteder, T. Siegmund, F. Fischer, and S. Schlögl, Numerical simulation of the plastic behavior of polysynthetically twinned Ti-Al crystals, Mater. Sci. Eng. A 192/193 (1995), pp. 149–154. doi: 10.1016/0921-5093(94)03229-7
  • A. Cornec, M. Kabir, and N. Huber, Numerical prediction of the stress-strain response of a lamellar γTiAl polycrystal using a two-scale modelling approach, Mater. Sci. Eng. A 620 (2015), pp. 273–285. doi: 10.1016/j.msea.2014.10.018
  • W. Marketz, F. Fischer, and H. Clemens, Deformation mechanisms in TiAl intermetallics – experiments and modeling, Int. J. Plasticity 19 (2003), pp. 281–321. doi: 10.1016/S0749-6419(01)00036-5
  • J. Butzke and S. Bargmann, Thermomechanical modeling of polysynthetically twinned TiAl crystals, Philos. Mag. 95(24) (2015), pp. 2607–2626. doi: 10.1080/14786435.2015.1070968
  • C. Zambaldi, Micromechanical modeling of γ-TiAl based alloys, Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule Aachen, 2010.
  • F. Appel, H. Clemens, and F. Fischer, Modeling concepts for intermetallic titanium aluminides. Prog. Mater. Sci. 81 (2016), pp. 55–124. doi: 10.1016/j.pmatsci.2016.01.001
  • M. Werwer, Mikromechanische Modellierung des Verformungs- und Bruchverhaltens von Lamellarem TiAl, Ph.D. thesis, University of Technology Hamburg, 2005.
  • F. Roters, P. Eisenlohr, and L. Hantcherli, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Mater. 58 (2010), pp. 1152–1211. doi: 10.1016/j.actamat.2009.10.058
  • J. Schnabel and S. Bargmann, Accessing colony boundary strengthening of fully lamellar TiAl alloys via micromechanical modeling, Materials 10 (2017), p. 896. doi: 10.3390/ma10080896
  • L. Anand, M. Gurtin, and B. Reddy, The stored energy of cold work, thermal annealing, and other thermodynamic issues in single crystal plasticity at small length scales, Int. J. Plasticity 64 (2015), pp. 1–25. doi: 10.1016/j.ijplas.2014.07.009
  • A. McBride, S. Bargmann, and B. Reddy, A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing, Comput. Mech. 55 (2015), pp. 755–769. doi: 10.1007/s00466-015-1134-5
  • D. Pierce, R. Asaro, and A. Needleman, Material rate dependence and local deformation in crystalline solids, Acta Metall. 31 (1983), pp. 1951–1976. doi: 10.1016/0001-6160(83)90014-7
  • K. Kowalczyk-Gajewska, Modelling of texture evolution in metals accounting for lattice reorientation due to twinning, Eur. J. Mech. A Solids 29 (2010), pp. 28–41. doi: 10.1016/j.euromechsol.2009.07.002
  • I. Beyerlein and C. Tomé, A dislocation-based constitutive law for pure Zr including temperature effects, Int. J. Plasticity 24 (2008), pp. 867–895. doi: 10.1016/j.ijplas.2007.07.017
  • Y. Umakoshi and T. Nakano, Plastic behaviour of TiAl crystals containing a single set of lamellae at high temperatures, ISIJ Int. 32 (1992), pp. 1339–1347. doi: 10.2355/isijinternational.32.1339
  • Y. Umakoshi and T. Nakano, The role of ordered domains and slip mode of phase in the plastic behaviour of TiAl crystals containing oriented lamellae, Acta Metall. Mater. 41(4) (1993), pp. 1155–1161. doi: 10.1016/0956-7151(93)90163-M
  • G. Cao, L. Fu, J. Lin, Y. Zhang, and C. Chen, The relationships of microstructure and properties of a fully lamellar TiAl alloy, Intermetallics 8 (2000), pp. 647–653. doi: 10.1016/S0966-9795(99)00128-4
  • R. Lebensohn, H. Uhlenhut, C. Hartig, and H. Mecking, Plastic flow of γ-TiAl-based polysynthetically twinned crystals: micromechanical modeling and experimental validation, Acta Mater. 46(13) (1998), pp. 4701–4709. doi: 10.1016/S1359-6454(98)00132-3
  • M. Werwer and A. Cornec, Numerical simulation of plastic deformation and fracture in polysynthetically twinned (PST) crystals of TiAl, Comput. Mater. Sci. 19 (2000), pp. 97–107. doi: 10.1016/S0927-0256(00)00144-0
  • Z.W. Ji, S. Lu, Q.M. Hu, D. Kim, R. Yang, and L. Vitos, Mapping deformation mechanisms in lamellar titanium aluminide, Acta Mater. 144 (2018), pp. 835–843. doi: 10.1016/j.actamat.2017.11.028
  • S. Bargmann, B. Klusemann, J. Markmann, J. Schnabel, K. Schneider, C. Soyarslan, and J. Wilmers, Generation of 3D representative volume elements for heterogeneous materials: A review, Prog. Mater. Sci. 96 (2018), pp. 322–384. doi: 10.1016/j.pmatsci.2018.02.003
  • B. Kad, M. Dao, and R. Asaro, Numerical simulations of stress-strain behavior in two-phase + γ lamellar TiAl alloys, Mater. Sci. Eng. A 192/193 (1995), pp. 97–103. doi: 10.1016/0921-5093(94)03210-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.