161
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Thermodynamic description of the viscosity of liquid solder alloys with minor Co impurities

& ORCID Icon
Pages 267-283 | Received 18 Jul 2018, Accepted 08 Oct 2018, Published online: 04 Dec 2018

References

  • N. Zhao, X. Pan, D. Yu, H. Ma and L. Wang, Viscosity and surface tension of liquid Sn-Cu lead-free solders, J. Electron. Mater. 38 (2009) pp. 828–833. doi: 10.1007/s11664-008-0611-4
  • T. Gancarz, Z. Moser, W. Gąsior, J. Pstruś and H. Henein, A comparison of surface tension, viscosity, and density of Sn and Sn–Ag alloys using different measurement techniques, Int. J. Thermophys. 32 (2011) pp. 1210–1233. doi: 10.1007/s10765-011-1011-1
  • E. Gebhardt, M. Becker and E. Tragner, Properties of metallic melts, VI. Viscosity of Liquid Silver-tin Alloys, Z Metall 44 (1953) pp. 379–382.
  • S. Seetharaman and D. Sichen, Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing, Metallurgical Mater. Trans. B 25 (1994) pp. 589–595. doi: 10.1007/BF02650079
  • M. Tan, B. Xiufang, X. Xianying, Z. Yanning, G. Jing and S. Baoan, Correlation between viscosity of molten Cu–Sn alloys and phase diagram, Phys. B 387 (2007) pp. 1–5. doi: 10.1016/j.physb.2005.10.140
  • E. Rozhitsina, S. Gruner, I. Kaban, W. Hoyer and V. Sidorov, Dynamic viscosities of pure tin and Sn-Ag, Sn-Cu, and Sn-Ag-Cu eutectic melts, Russian Metallurgy (Metally) 2011 (2011) pp. 118. doi: 10.1134/S0036029511020108
  • S. Morioka, Evaluation of the viscosity for binary and ternary liquid alloys, Mater. Sci. Eng.: A 362 (2003) pp. 223-227. doi: 10.1016/S0921-5093(03)00619-1
  • Y. Zhao and X. Hou, A direct correlation between viscosity and liquid structure in Cu-Sn alloys, Adv. Condensed Matter Phys. 2017 (2017).
  • A. Yakymovych, Y. Plevachuk, S. Mudry, J. Brillo, H. Kobatake and H. Ipser, Viscosity of liquid Co–Sn alloys: thermodynamic evaluation and experiment, Phys. Chem. Liquids 52 (2014) pp. 562-570. doi: 10.1080/00319104.2013.876639
  • L. Battezzati and A. Greer, The viscosity of liquid metals and alloys, Acta Metall. 37 (1989) pp. 1791-1802. doi: 10.1016/0001-6160(89)90064-3
  • T. Toye and E. Jones, Physical properties of certain liquid binary alloys of tin and zinc, Proc. Phys. Soc. 71 (1958) pp. 88. doi: 10.1088/0370-1328/71/1/313
  • Y. Plevachuk, V. Sklyarchuk, W. Hoyer and I. Kaban, Electrical conductivity, thermoelectric power and viscosity of liquid Sn-based alloys, J. Mater. Sci. 41 (2006) pp. 4632-4635. doi: 10.1007/s10853-006-0053-4
  • M.J. Assael, A.E. Kalyva, K.D. Antonia, R.M. Banish, I. Egry, J. Wu, E. Kaschnitz and W.A. Wakeham, Reference data for the density and viscosity of liquid antimony, bismuth, lead, nickel and silver, High Temperatures–High Pressures 41 (2012).
  • M.J. Assael, A.E. Kalyva, K.D. Antoniadis, R. Michael Banish, I. Egry, J. Wu, E. Kaschnitz and W.A. Wakeham, Reference data for the density and viscosity of liquid copper and liquid tin, J. Phys. Chem. Ref. Data 39 (2010) pp. 033105. doi: 10.1063/1.3467496
  • V. Sidorov, S. Uporov, E. Rozitsinaet al., Physical properties of some Sn-based melts, in EPJ Web of Conferences, Vol. 15, EDP Sciences, 2011, p. 01015.
  • X. Ma, Y. Qian and F. Yoshida, Effect of La on the Cu–Sn intermetallic compound (IMC) growth and solder joint reliability, J Alloy Compd 334 (2002) pp. 224–227. doi: 10.1016/S0925-8388(01)01747-9
  • E.K. Ohriner, Intermetallic formation in soldered copper-based alloys at 150 to 250 C, Weld. J. 66 (1987).
  • A. Yakymovych, V. Sklyarchuk, Y. Plevachuk and B. Sokoliuk, Viscosity and electrical conductivity of the liquid Sn-3.8 Ag-0.7 Cu alloy with minor Co admixtures, J. Mater. Eng. Performance 25 (2016) pp. 4437-4443. doi: 10.1007/s11665-016-2297-8
  • L. Sun and L. Zhang, Properties and microstructures of Sn-Ag-Cu-X lead-free solder joints in electronic packaging, Adv. Mater. Sci. Eng. (2015).
  • E. Efzan Mhd Noor, A. Singh and Y. Tze Chuan, A review: influence of nano particles reinforced on solder alloy, Solder Surf. Mt. Tech. 25 (2013) pp. 229–241.
  • A. Sharma, B. Baek and J.P. Jung, Influence of La2O3 nanoparticle additions on microstructure, wetting, and tensile characteristics of Sn–Ag–Cu alloy, Mater. Des. 87 (2015) pp. 370–379. doi: 10.1016/j.matdes.2015.07.137
  • C. Ho, S. Yang and C. Kao, Interfacial reaction issues for lead-free electronic solders, J. Mater. Sci.: Mater. Electron. 18 (2007) pp. 155–174.
  • C. Wu, D. Yu, C. Law and L. Wang, Properties of lead-free solder alloys with rare earth element additions, Mater. Sci. Eng.: R: Reports 44 (2004) pp. 1–44. doi: 10.1016/j.mser.2004.01.001
  • T. Laurila, J. Hurtig, V. Vuorinen and J.K. Kivilahti, Effect of Ag, Fe, Au and Ni on the growth kinetics of Sn–Cu intermetallic compound layers, Microelectron. Reliab. 49 (2009) pp. 242–247. doi: 10.1016/j.microrel.2008.08.007
  • A. Yakymovych, Y. Plevachuk, P. Švec, D. Janičkovič, P. Šebo, N. Beronska, M. Nosko, L. Orovcik, A. Roshanghias and H. Ipser, Nanocomposite SAC solders: morphology, electrical and mechanical properties of Sn–3.8 Ag–0.7 Cu solders by adding Co nanoparticles, J. Mater. Sci.: Mater. Electron. 28 (2017) pp. 10965–10973.
  • K.-C. Chou, A general solution model for predicting ternary thermodynamic properties, Calphad 19 (1995) pp. 315–325. doi: 10.1016/0364-5916(95)00029-E
  • F. Kohler, Estimation of the thermodynamic data for a ternary system from the corresponding binary systems, Monatsh. Chem 91 (1960) pp. 738–740. doi: 10.1007/BF00899814
  • Y.-M. Muggianu, M. Gambino and J.-P. Bros, Enthalpies de formation des alliages liquides bismuth-étain-gallium à 723 k. Choix d’une représentation analytique des grandeurs d’excès intégrales et partielles de mélange, J. Chim. Phys. 72 (1975) pp. 83–88.
  • G. Toop, Predicting ternary activities using binary data, Trans. Metall. Soc. AIME 233 (1965) pp. 850–858.
  • M. Hillert, Empirical methods of predicting and representing thermodynamic properties of ternary solution phases, Calphad 4 (1980) pp. 1–12. doi: 10.1016/0364-5916(80)90016-4
  • G. Kaptay, A New Equation to Estimate the Concentration Dependence of the Viscosity of Liquid Metallic Alloys from the Heat of Mixing Data, 23. International Conference Proceedings of micro CAD, University of Miskolc, Hungary, 2003.
  • L.Y. Kozlov, L.M. Romanov, N.N. Petrov, Izv. Vysch. Uch. Zav. Chernaya. Metallurgiya 3 (1983) pp. 7–11.
  • I. Budai, M.Z. Benkő and G. Kaptay, Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys, in materials science forum, Trans. Tech. Publ. (2007), pp. 489–496.
  • M. Schick, J. Brillo, I. Egry and B. Hallstedt, Viscosity of Al–Cu liquid alloys: measurement and thermodynamic description, J. Mater. Sci. 47 (2012) pp. 8145–8152. doi: 10.1007/s10853-012-6710-x
  • W. Gąsior, Viscosity modeling of binary alloys: comparative studies, Calphad 44 (2014) pp. 119–128. doi: 10.1016/j.calphad.2013.10.007
  • M. Hirai, Estimation of viscosities of liquid alloys, ISIJ Int. 33 (1993) pp. 251–258. doi: 10.2355/isijinternational.33.251
  • E.A. Moelwyn-Hughes, Physical Chemistry, Vol. 1333, Pergamon Press, Oxford, 1961.
  • Y. Sato, Representation of the viscosity of molten alloy as a function of the composition and temperature, Jpn. J. Appl. Phys. 50 (2011) pp. 11RD01. doi: 10.7567/JJAP.50.11RD01
  • K.-C. Chou and S.-K. Wei, A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries, Metall. Mater. Trans. B 28 (1997) pp. 439–445. doi: 10.1007/s11663-997-0110-7
  • X.M. Zhong, Y.H. Liu, K.-C. Chou, X.G. Lu, D. Zivkovic and Z. Zivkovic, Estimating ternary viscosity using the thermodynamic geometric model, J. Phase Equilib. 24 (2003) pp. 7–11. doi: 10.1007/s11669-003-0002-8
  • G.-H. Zhang, L.-J. Wang and K.-C. Chou, A comparison of different geometrical models in calculating physicochemical properties of Quaternary systems, Calphad 34 (2010) pp. 504–509. doi: 10.1016/j.calphad.2010.10.004
  • G.-H. Zhang and K.-C. Chou, General formalism for new generation geometrical model: application to the thermodynamics of liquid mixtures, J. Solution Chem. 39 (2010) pp. 1200–1212. doi: 10.1007/s10953-010-9570-5
  • G. Kaptay, Modelling interfacial energies in metallic systems, Mater. Sci. Forum 473-474 (2004) pp. 1–10. doi: 10.4028/www.scientific.net/MSF.473-474.1
  • E.D.C. Andrade, LVIII. A theory of the viscosity of liquids.—part II, The London, Edinburgh, and Dublin Philos. Magazine J. Sci. 17 (1934) pp. 698-732. doi: 10.1080/14786443409462427
  • X.-J. Liu, C.-P. Wang, I. Ohnuma, R. Kainuma and K. Ishida, Development of thermodynamic and kinetic databases in micro-soldering alloy systems and their applications, Progress Natural Sci.: Mater. Int. 21 (2011) pp. 97–110.
  • A.T. Dinsdale, A. Watson, A. Kroup a, J. Vrest al, A. Zemanova and J. Vizdal, in COST Action 531, A.T. Dinsdale, A. Watson, A.A. Kroup, J. Vrest al, A. Zemanova and J. Vizdal, J., eds., Brno, Czech Republic.
  • Y. Kawai and Y. Shiraishi, Handbook of physico-chemical properties at high temperatures, in Handbook of Physico-Chemical Properties at High Temperatures, Y. Kawai, and Y. Shiraishi, eds. Iron and Steel Institute of Japan, Iron and Steel Institute of Japan, 1988.
  • J.V. Juan and P.N. Quested, Thermophysical Properties, Vol. 15, ASM International, ISBN:9780871707116, 2008, pp. 468–481.
  • J.R. Wilson, The structure of liquid metals and alloys, Metall. Rev. 10 (1965) pp. 381–590.
  • L.J. Wittenberg, R. DeWitt, Volume contraction during melting; emphasis on lanthanide and actinide metals. J. Chem. Phys. 56 (1972), pp. 4526–4533. doi: 10.1063/1.1677899
  • W.F. Gale, T.C. (Eds.) Totemeier, Smithells metals reference book, Elsevier, 2003.
  • E.A. Brandes and B.G. B., Smithells Metals Reference Book, 7th ed., Elsevier, Amsterdam, 2003.
  • A. Yakymovych, V. Vus and S. Mudry, Viscosity of liquid Cu-In-Sn alloys, J. Mol. Liq. 219 (2016) pp. 845–850. doi: 10.1016/j.molliq.2016.04.055
  • M. Palumbo, S. Curiotto and L. Battezzati, Thermodynamic analysis of the stable and metastable Co–Cu and Co–Cu–Fe phase diagrams, Calphad 30 (2006) pp. 171–178. doi: 10.1016/j.calphad.2005.10.007
  • L. Liu, C. Andersson and J. Liu, Thermodynamic assessment of the Sn-Co lead-free solder system, J. Electron. Mater. 33 (2004) pp. 935–939. doi: 10.1007/s11664-004-0019-8
  • W. Gierlotka, Thermodynamic description of the Quaternary Ag-Cu-In-Sn system, J. Electron. Mater. 41 (2012) pp. 86–108. doi: 10.1007/s11664-011-1757-z
  • H. Flandorfer, C. Luef and U. Saeed, On the temperature dependence of the enthalpies of mixing in liquid binary (Ag, Cu, Ni)–Sn alloys, J. Non-Cryst. Solids 354 (2008) pp. 2953–2972. doi: 10.1016/j.jnoncrysol.2007.12.009
  • K. Fitzner, Q. Guo, J. Wang and O.J. Kleppa, Enthalpies of liquid–liquid mixing in the systems Cu–Ag, Cu–Au and Ag–Au by using an in-situ mixing device in a high temperature single-unit differential calorimeter, J Alloy Compd 291 (1999) pp. 190–200. doi: 10.1016/S0925-8388(99)00279-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.