229
Views
5
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Evidence of partial gap opening and Ce-site dilution effects in a heavy fermion compound CeNiGe2

& ORCID Icon
Pages 386-400 | Received 02 Jun 2018, Accepted 17 Oct 2018, Published online: 01 Nov 2018

References

  • N. Grewe, and F. Steglich, Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam, 1991, 14, pp. 343.
  • S. Doniach, Valence Instabilities and Related Narrow Band Phenomena, Parks Plenum, New York, 1977, pp. 169.
  • H.V. Lohneysen, A. Rosch, M. Vojta, and P. Wolfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79 (2007), pp. 1015–1075. doi: 10.1103/RevModPhys.79.1015
  • J.R. Jeffries, N.A. Frederick, E.D. Bauer, H. Kimura, V.S. Zapf, K.D. Hof, T.A. Sayles, and M.B. Maple, Superconductivity and non-Fermi liquid behaviour near antiferromagnetic quantum critical points in CeRh1-xCoxIn5, Phys. Rev. B 72 (2005), pp. 024551. doi: 10.1103/PhysRevB.72.024551
  • H.V. Lohneysen, T. Pietrus, G. Portisch, H.G. Schlager, A. Schroder, M. Sieck, and T. Trappmann, Non-fermi-liquid in a heavy-fermion alloy at a magnetic instability, Phys. Rev. Lett. 72 (1994), pp. 3262–3265. doi: 10.1103/PhysRevLett.72.3262
  • P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich, Magnetic-field induced quantum critical point in YbRh2Si2, Phys. Rev. Lett. 89 (2002), pp. 056402. doi: 10.1103/PhysRevLett.89.056402
  • P. Schlottmann, Handbook of Magnetic Materials, vol. 23, Chapter 2, K.H.J. Buschow, editor, Elsevier B. V., 2015, pp. 85.
  • A. Yeh, Y.-Ah Soh, J. Brooke, G. Aeppli, T.F. Rosenbaum, and S.M. Hayden, Quantum phase transition in a common metal, Nature 419 (2002), pp. 459–462. doi: 10.1038/nature01044
  • R. Movshovich, A. Lacerda, P.C. Canfield, J.D. Thompson and Z. Fisk, Fermi surface instability and symmetry breaking in heavy-fermion compound YbBiPt, Phys. Rev. Lett. 73 (1994), pp. 492–495. doi: 10.1103/PhysRevLett.73.492
  • H.-F Li, C. Cao, A. Wildes, W. Schmidt, K. Schmalzl, B. Hou, L.-P Regnault, C. Zhang, P. Meuffels, W. Loser, and G. Roth, Distinct itinerant spin-density waves and local-moment antiferromagnetic in an intermetallic ErPd2Si2 single crystal, Sci. Rep. 5 (2015), pp.7968. doi: 10.1038/srep07968
  • M.H. Jung, N. Harrison, A.H. Lacerda, H. Nakotte, P.G. Pagliuso, J.L. Sarrao, and J.D. Thompson, Magnetocrystalline anisotropy in a single crystal of CeNiGe2, Phys. Rev. B 66 (2002), pp. 054420 doi: 10.1103/PhysRevB.66.054420
  • V.K. Pecharsky, and K.A. Gschneidner, Jr, Low-temperature heat capacity and magnetic properties of the RNiX2 compounds (R = La, Ce; X = Si, Ge, Sn), Phys. Rev. B 43 (1991), pp. 10906–10914. doi: 10.1103/PhysRevB.43.10906
  • A.P. Pikul, D. Kaczorowski, Z. Bukowski, T. Plackowski, and K. Gofryk, Single-crystal study of highly anisotropy CeNiGe2, J. Magn. Magn. Mater. 16 (2004), pp. 6119–6128
  • C. Geibel, C. Kammerer, B. Seidel, C.D. Bredl, A. Grauel, and F. Steglich, Magnetic ordering in the heavy-fermion compound CePtSi2 and CeNiGe2, J. Magn. Magn. Mater. 108 (1992), pp. 207–208. doi: 10.1016/0304-8853(92)91413-N
  • P. Schobinger-Papamantellos, A. Krimmel, A. Grauel, and K.H.J. Buschow, Magnetic ordering of NdNiGe2 and CeNiGe2 studied by neutron diffraction and magnetic measurements, J. Magn. Magn. Mater. 125 (1993), pp. 151–156. doi: 10.1016/0304-8853(93)90831-L
  • A.T. Holmes, T. Muramatsu, D. Kaczorowski, Z. Bukowski, T. Kagayama, and K. Shimizu, Non-Doniach-type phase diagram of CeNiGe2, Phys. Rev. B 85 (2012), pp. 033101. doi: 10.1103/PhysRevB.85.033101
  • K. Singh, and K Mukherjee, Signature of partially frustrated moments and a new magnetic phase in CeNiGe2, Phys. Lett. A 381 (2017), pp. 3236–3240. doi: 10.1016/j.physleta.2017.07.043
  • D.Y. Kim, D.H. Ryu, J.B. Hong, J.-G Park, Y.S. Kwon, M.A. Jung, M.H. Jung, N. Takeda, M. Ishikawa, and S. Kimura, Anomalous magnetic properties and non-Fermi-liquid behaviour in single crystals of the Kondo lattice CeNiGe2-xSix, J. Phys.: Condens. Matter. 16 (2004), pp. 8323–8334.
  • P.A. Joy, and S.K. Date, Comparison of the zero-field-cooled magnetization behavior of some ferromagnetic and ferromagnetic systems, J. Magn. Magn. Mater. 218 (2000), pp. 229–237. doi: 10.1016/S0304-8853(00)00405-4
  • K. Huang, J.J. Hamlin, R.E. Baumbach, M. Janoschek, N. Kanchanavatee, D.A. Zocco, F. Ronning, and M.B. Maple, Ferromagnetic quantum critical point in UCo1-xFexGe, Phys. Rev. B 87 (2013), pp. 054513. doi: 10.1103/PhysRevB.87.054513
  • Y. Takahashi, On the origin of the Curie–Weiss Law of the magnetic susceptibility in itinerant electron ferromagnetism, J. Phys. Soc. Jpn. 55, (1986), pp. 3553–3573. doi: 10.1143/JPSJ.55.3553
  • P. Rhodes, and E P. Wohlfarth, The effective Curie–Weiss constant of ferromagnetic metals and alloys, Proc. R. Soc. Lond. A 273 (1963), pp. 247–258. doi: 10.1098/rspa.1963.0086
  • S.K. Banerjee, On a generlised approach to first and second order magnetic transitions, Phys. Lett. 12 (1964), pp. 16–17. doi: 10.1016/0031-9163(64)91158-8
  • S. Bustingorry, F. Pomiro, G. Aurelio, and J. Curiale, Second-order magnetic critical points at finite magnetic fields: revisiting Arrott plots, Phys. Rev. B 93 (2016), pp. 224429 (R). doi: 10.1103/PhysRevB.93.224429
  • D. Moroni-Klementowicz, M. Brando, C. Albrecht, W.J. Duncan, F.M. Grosche, D. Gruner, and G. Kreiner, Magnetism in Nb1-yFe2+y: compositions and magnetic field dependence, Phys. Rev. B 79 (2009), pp. 224410. doi: 10.1103/PhysRevB.79.224410
  • M.J.P. Gingras, C.V. Stager, N.P. Raju, B.D. Gaulin, and J.E. Greedan, Static critical behavior of the spin-freezing transitions in the geometrically frustrated pyrochlore antiferromagnet, Phys. Rev. Lett. 78 (1997), pp. 947–950. doi: 10.1103/PhysRevLett.78.947
  • P. Chandra, A.P. Ramirez, P. Coleman, E. Bruck, A.A. Menovsky, Z. Fisk, and E. Bucher, Nonlinear susceptibility measurements in heavy fermion systems, Physica B 199–200 (1994), pp. 426–429. doi: 10.1016/0921-4526(94)91858-9
  • J.-G Park, P. Haen, P. Lejay, and J. Voiron, Non-linear susceptibility in heavy fermion compounds CeRu2Si2 and Ce1-xYxRu2Si2 (x ≤ 0.1), J. Phys.: Condens. Matter 6 (1994), pp. 9383–9392.
  • B.S. Shivaram, B. Dorsey, D.G. Hinks, and P. Kumar, Metamagnetism and the fifth-order susceptibility in UPt3, Phys. Rev. B 89 (2014), pp. 161108 (R). doi: 10.1103/PhysRevB.89.161108
  • A.P. Ramirez, P. Coleman, P. Chandra, E. Bruck, A.A. Menovsky, Z. Fisk, and E. Bucher, Nonlinear susceptibility as a probe of tensor spin order in URu2Si2, Phys. Rev. Lett. 68 (1992), pp. 2680–2683. doi: 10.1103/PhysRevLett.68.2680
  • F. Steckel, S. Rodan, R. Hermann, C.G.F. Blum, S. Wurmehl, B. Buchner, and C. Hess, Spin density wave order and fluctuations in Mn3Si: A transport study, Phys. Rev. B 90 (2014), pp. 134411. doi: 10.1103/PhysRevB.90.134411
  • S. Murayama, C. Sekine, A. Yokoyanagi, K. Hoshi, and Y. Onuki, Uniaxial Fermi-surface nesting and spin-density-wave transition in the heavy-fermion compound Ce(Ru0.85Rh0.15)2Si2, Phys. Rev. B 56 (1997), pp. 11092–11096. doi: 10.1103/PhysRevB.56.11092
  • J. Tang, T. Matsumoto, H. Abe, and A. Matsushita, Specific heat of the spin density wave state in Ce(Ru0.85Rh0.15)2Si2 under pressure, Solid State Commun. 109 (1999), pp. 445–448. doi: 10.1016/S0038-1098(98)00602-4
  • J. Wooldridge, D.M.K. Paul, G. Balakrishnan, and M.R. Lees, Investigation of the spin density wave in NaxCoO2, J. Phys.: Condens. Matter 17 (2005), pp. 707–718.
  • H. Gu, J. Tang, and A. Matsushita, Spin-density-wave state under pressure in the heavy-fermion compound Ce(Ru0.95Rh0.05)2Si2, Phys. Rev. B 65 (2001), pp. 024403. doi: 10.1103/PhysRevB.65.024403
  • L. Zhu, M. Garst, A. Rosch, and Q Si, Universally diverging Gruneisen and the magnetocaloric effect close to quantum critical points, Phys. Rev. Lett. 91 (2003), pp. 066404. doi: 10.1103/PhysRevLett.91.066404
  • M. Garst, and A. Rosch, Sign change of the Gruneisen parameter and magnetocaloric effect near quantum critical points, Phy. Rev. B 72 (2005), pp. 205129. doi: 10.1103/PhysRevB.72.205129
  • Y. Tokiwa, T. Radu, C. Geibel, F. Steglich, and P. Gegenwart, Divergence of the Magnetic Gruneisen Ratio at the Field-induced Quantum Critical Point in YbRh2Si2, Phy. Rev. Lett. 102 (2009), pp. 066401. doi: 10.1103/PhysRevLett.102.066401
  • P. Gegenwart, Y. Tokiwa, J.G. Donath, R. Kuchler, C. Bergmann, H.S. Jeevan, E.D. Bauer, J.L. Sarrao, C. Geibel, and F. Steglich, Divergence of the gruneisen parameter and magnetocaloric effect at heavy fermion quantum critical points, J. Low Temp. Phys. 161 (2010), pp. 117–133. doi: 10.1007/s10909-010-0197-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.