212
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A new reconstruction core of the 30° partial dislocation in silicon

, &
Pages 347-375 | Received 08 Apr 2018, Accepted 07 Oct 2018, Published online: 01 Nov 2018

References

  • K. Wessel, H. Alexander, On the mobility of partial dislocations in silicon. Philos. Mag. 35(6) (1977), pp. 1523–1536 doi: 10.1080/14786437708232975
  • M. Tang, L. Colombo, J. Zhu, and T.D. de la Rubia, Intrinsic point defects in crystalline silicon: Tight-binding molecular dynamics studies of self-diffusion, interstitial-vacancy recombination, and formation volumes, Phys. Rev. B 55(21) (1997), pp. 14279. doi: 10.1103/PhysRevB.55.14279
  • J. Rabier and J.L. Demenet, Low temperature, high stress plastic deformation of semiconductors the silicon case, Phys. Stat. Sol. (b) 222 (2000), pp. 63. doi: 10.1002/1521-3951(200011)222:1<63::AID-PSSB63>3.0.CO;2-E
  • J. Rabier, P. Cordier, T. Tondellie, J.L. Demenet, and H. Garem, Dislocation microstructures in Si plastically deformed at RT, J. Phys.: Condens. Matter. 12 (2000), pp. 10059.
  • J.P. Hirth and J. Lothe, Theory of dislocations, 2nd ed., Wiley, New York, 1982.
  • P.B. Hirsch, Dislocation in semiconductors, Mater. Sci. Technol. 1 (1985), pp. 666–677. doi: 10.1179/mst.1985.1.9.666
  • B. Joós, Q. Ren, and M.S. Duesbery, Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces, Phys. Rev. B 50(9) (1994), pp. 5890–5898. doi: 10.1103/PhysRevB.50.5890
  • V.V. Bulatov and E. Kaxiras, Semidiscrete variational Peierls framework for dislocation core properties, Phys. Rev. Lett. 78(22) (1997), pp. 4221–4224. doi: 10.1103/PhysRevLett.78.4221
  • J.F. Justo, V.V. Bulatov, and S. Yip, Dislocation core reconstruction and its effect on dislocation mobility in silicon, J. Appl. Phys. 86(8) (1999), pp. 4249–4257. doi: 10.1063/1.371353
  • J.R. Chelikowsky and J.C.H. Spence, Line defects in silicon: The 90∘ partial dislocation, Phys. Rev. B 30(2) (1984), pp. 694–701. doi: 10.1103/PhysRevB.30.694
  • Q. Ren, B. Joós, and M.S. Duesbery, Test of the Peierls-Nabarro model for dislocations in silicon, Phys. Rev. B 52(18) (1995), pp. 13223–13228. doi: 10.1103/PhysRevB.52.13223
  • M.S. Duesbery and G.Y. Richardson, The dislocation core in crystalline materials, Crit. Rev. Solid State Mater. Sci. 17(1) (1991), pp. 1–46. doi: 10.1080/10408439108244630
  • M.S. Duesbery, B. Joós, and D.J. Michel, Dislocation core studies in empirical silicon models, Phys. Rev. B 43(6) (1991), pp. 5143–5146. doi: 10.1103/PhysRevB.43.5143
  • W. Cai, V.V. Bulatov, J. Chang, J. Li, and S. Yip, Dislocation core effects on mobility, Dislocations Solid 18 (2002), pp. 1–80.
  • T. Geipel, Simulation of dislocation source dynamics in silicon for a 60∘ dislocation, Acta Mater. 45(6) (1997), pp. 2639–2653. doi: 10.1016/S1359-6454(96)00310-2
  • S. Goel, A. Kovalchenko, A. Stukowski, and G. Cross, Influence of microstructure on the cutting behaviour of silicon, Acta Mater. 105 (2016), pp. 464–478. doi: 10.1016/j.actamat.2015.11.046
  • F.H. Stillinger and T.A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31(8) (1985), pp. 5262–5271. doi: 10.1103/PhysRevB.31.5262
  • T.A. Arias and J.D. Joannopoulos, Ab initio theory of dislocation interactions: From close-range spontaneous annihilation to the long-range continuum limit, Phys. Rev. Lett. 73(5) (1994), pp. 680–683. doi: 10.1103/PhysRevLett.73.680
  • H. Koizumi, Y. Kamimura, and T. Suzuki, Core structure of a screw dislocation in a diamond-like structure, Philos. Mag. A 80(3) (2000), pp. 609–620. doi: 10.1080/01418610008212071
  • L. Pizzagalli, P. Beauchamp, and J. Rabier, Undissociated screw dislocations in silicon: Calculations of core structure and energy, Philos. Mag. 83(10) (2003), pp. 1191–1204. doi: 10.1080/0141861031000071999
  • L. Pizzagalli, P. Beauchamp, and H. Jnsson, Calculations of dislocation mobility using nudged elastic band method and first principles dft calculations, Philos. Mag. 88(1) (2008), pp. 91–100. doi: 10.1080/14786430701767402
  • L. Pizzagalli, J.L. Demenet, J. Rabier, Theoretical study of pressure effect on the dislocation core properties in semiconductors. Phys. Rev. B 79 (2009), pp. 045203 doi: 10.1103/PhysRevB.79.045203
  • J. Bennetto, R.W. Nunes, and D. Vanderbilt, Period-doubled structure for the 90∘ partial dislocation in silicon, Phys. Rev. Lett. 79(2) (1997), pp. 245–248. doi: 10.1103/PhysRevLett.79.245
  • R.W. Nunes, J. Bennetto, and D. Vanderbilt, Core reconstruction of the 90∘ partial dislocation in nonpolar semiconductors, Phys. Rev. B 58(19) (1998), pp. 12563–12566. doi: 10.1103/PhysRevB.58.12563
  • R.W. Nunes and D. Vanderbilt, Stability of the period-doubled core of the 90∘ partial in silicon, Phys. Rev. B 85(16) (2000), pp. 3540.
  • R.W. Nunes and D. Vanderbilt, Models of core reconstruction for the 90∘ partial dislocation in semiconductors, J. Phys.: Condens. Matter 12 (2000), pp. 10021–10027.
  • J.A. White, A. Valladares, and A.P. Sutton, First principles simulations of the structure, formation, and migration energies of kinks on the 90∘ partial dislocation in silicon, Phys. Rev. Lett. 81 (1998), pp. 4903–4906. doi: 10.1103/PhysRevLett.81.3227
  • L. Pizzagalli, A. Pedersen, A. Arnaldsson, Theoretical study of kinks on screw dislocation in silicon. Phys. Rev. B 77 (2008), pp. 064106 doi: 10.1103/PhysRevB.77.064106
  • N. Lehto and S. Öberg, Effects of dislocation interactions application to the period-doubled core, Phys. Rev. Lett. 80(25) (1998), pp. 55568–55571. doi: 10.1103/PhysRevLett.80.5568
  • A.T. Blumenau, C.J. Fall, R. Jones, Structure and motion of basal dislocations in silicon carbide. Phys. Rev. B 68 (2003), pp. 174108 doi: 10.1103/PhysRevB.68.174108
  • M. Miyata and T. Fujiwara, Ab initio calculation of Peierls stress in silicon, Phys. Rev. B 63(4) (2001), pp. 045206. doi: 10.1103/PhysRevB.63.045206
  • S.P. Beckman, D.C. Chrzan, Reconstruction energies of partial dislocations in cubic semiconductors. Phys. Rev. B 76 (2007), pp. 144110 doi: 10.1103/PhysRevB.76.144110
  • A. Valladares, The core reconstruction of the 90 degree partial dislocation in silicon, Philos. Mag. Lett. 79(1) (1999), pp. 9–17. doi: 10.1080/095008399177606
  • J. Bennetto, R.W. Nunes, and D. Vanderbilt, Structure, barriers, and relaxation mechanisms of kinks in the 90∘ partial dislocation in silicon, Phys. Rev. Lett. 77(8) (1996), pp. 1516–1519. doi: 10.1103/PhysRevLett.77.1516
  • S. Wang, L. Huang, and R. Wang, The 90∘ partial dislocation in semiconductor silicon: An investigation from the lattice P-N theory and the first principle calculation, Acta Mater. 109 (2016), pp. 187–201. doi: 10.1016/j.actamat.2016.02.052
  • R. Jones, Theoretical calculations of electron states associated with dislocations, J. Phys. Colloques 40(C6) (1979), pp. C6 C33 C6–33 –C6–38. doi: 10.1051/jphyscol:1979607
  • J.E. Northrup, M.L. Cohen, J.R. Chelikowsky, J. Spence, and A. Olsen, Electronic structure of the unreconstructed 30∘ partial dislocation in silicon, Phys. Rev. B 24(8) (1981), pp. 4623–4628. doi: 10.1103/PhysRevB.24.4623
  • S. Marklund, Structure and energy levels of dislocations in silicon, J. Phys. Colloques 44(C4) (1983), pp. C4 C25 C4–25 –C4–35. doi: 10.1051/jphyscol:1983403
  • V.V. Bulatov, S. Yip, and A.S. Argon, Atomic modes of dislocation mobility in silicon, Philos. Mag. A 72(2) (1995), pp. 453–496. doi: 10.1080/01418619508239934
  • W. Cai, V.V. Bulatov, J.F. Justo, and S. Yip, Kink asymmetry and multiplicity in dislocation cores, Phys. Rev. Lett. 79(25) (1997), pp. 5042–5045. doi: 10.1103/PhysRevLett.79.5042
  • R.W. Nunes, J. Bennetto, and D. Vanderbilt, Atomic structure of dislocation kinks in silicon, Phys. Rev. B 57(17) (1998), pp. 10388–10397. doi: 10.1103/PhysRevB.57.10388
  • W. Cai, S. Yip, V.V. Bulatov, J.F. Justo, M. de Koning, A.S. Argon, T. Lenosky, and T.D. de la Rubia, Parameter-free modelling of dislocation motion: The case of silicon, Philos. Mag. A 81 (2001), pp. 1257–1281. doi: 10.1080/01418610108214440
  • N. Oyama, T. Ohno, Migration processes of the 30∘ partial dislocation in silicon. Phys. Rev. Lett. 93 (2004), pp. 195502 doi: 10.1103/PhysRevLett.93.195502
  • F. Bernardini, L. Colombo, Interaction of doping impurities with the 30∘ partial dislocations in sic: Anab initio investigation. Phys. Rev. B 72 (2005), pp. 085215 doi: 10.1103/PhysRevB.72.085215
  • C. Wang, Q. Meng, K. Zhong, Atomic simulations of the dynamic properties of the 30∘ partial dislocation in Si crystal. Phys. Rev. B 77 (2008), pp. 205209 doi: 10.1103/PhysRevB.77.205209
  • Z. Wang, M. Saito, K.P. McKenna, and Y. Ikuhara, Polymorphism of dislocation core structures at the atomic scale, Nat. Commun. 5 (2014), pp. 3239. doi: 10.1038/ncomms4239
  • S. Wang, S. Li, and R. Wang, Solving dislocation equation for the dislocation with complex core, Eur. Phys. J. B 83(1) (2011), pp. 15–22. doi: 10.1140/epjb/e2011-20427-0
  • S. Wang, A unified dislocation equation from lattice statics. J. Phys. A: Math. Theor. 42 (2009), pp. 025208 doi: 10.1088/1751-8113/42/2/025208
  • S. Wang, H. Zhang, X. Wu, Theoretical calculation of the dislocation width and Peierls barrier and stress for semiconductor silicon. J. Phys.: Condens. Matter 22 (2010), pp. 055801
  • J.P. Hirth, Some current topics in dislocation theory, Acta Mater. 48 (2000), pp. 93–104. doi: 10.1016/S1359-6454(99)00289-X
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1) (1993), pp. 558–561. doi: 10.1103/PhysRevB.47.558
  • G. Kresse, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16) (1996), pp. 11169–11186. doi: 10.1103/PhysRevB.54.11169
  • M.I. Heggie and R. Jones, Structure and properties of dislocations in semiconductors, Inst. Phys. Conf. Ser 87 (1987), pp. 367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.