525
Views
19
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A study of the dynamic impact behaviour of IN 718 and ATI 718Plus® superalloys

ORCID Icon, ORCID Icon &
Pages 419-437 | Received 15 Apr 2018, Accepted 21 Oct 2018, Published online: 07 Nov 2018

References

  • R.E. Schafrik, D.D. Ward, J.R Groh, Application of alloy 718 in GE aircraft engines: past, present and next five years. Proceedings of the 5th International Symposium on Superalloys 718, 625, 706, and Derivatives 718 (2001), pp. 1–11. Pittsburgh P.A, June, 2001
  • D.F. Paulonis, J.J. Schirra, P. Whitney, Alloy 718 at Pratt & Whitney: historical perspective and future challenges. Proceedings of the 5th International Symposium on Superalloys 718, 625, 706, and Derivatives 718 (2001), pp. 13–23. Pittsburgh P.A, June, 2001 doi: 10.7449/2001/Superalloys_2001_13_23
  • T. Kobayashi, J.W. Simons, C.S. Brown, and D.A Shockey, Plastic flow behavior of Inconel 718 under dynamic shear loads. Int. J. Impact Eng. 35 (2008), pp. 389–396. doi: 10.1016/j.ijimpeng.2007.03.005
  • J.M. Pereira, and B.A Lerch, Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications. Int. J. Impact Eng. 25 (2001), pp. 715–733. doi: 10.1016/S0734-743X(01)00018-5
  • W.D. Cao, Solidification and solid state phase transformation of Allvac 718Plus. Proceedings of the 6th International Symposium on Superalloys 718, 625, 706 and Derivatives 718 (2005), pp. 165–178. Pittsburgh P.A, October, 2005. doi: 10.7449/2005/Superalloys_2005_165_177
  • A. Momeni, S.M. Abbasi, M. Morakabati, and H Badri, A comparative study on the Hot working behavior of inconel 718 and ALLVAC 718 plus. Metall. Mater. Trans. A. 48 (2017) pp.1216–1229. doi: 10.1007/s11661-016-3904-x
  • S. Oppenheimer, E. Mcdevitt, and W.-D. Cao, Toughness as a function of thermo-mechanical processing and heat treatment IN 718plus® Superalloy. 7th International Symposium on Superalloy 718 and Derivatives. TMS Pittsburgh, PA. 2010.
  • B. Dodd, and Y. Bai (eds). Adiabatic Shear Localization: Frontiers and Advances. Elsevier Ltd. New York, 2012.
  • W. Jones, H. Dawson, Effects of Metallurgical Parameters on Dynamic Fracture: Metallurgical Effects at High Strain Rates, Springer, Boston, NY, USA(1973), 443–458. doi: 10.1007/978-1-4615-8696-8_25
  • A. Ghosh, A. Adesola, J.A. Szpunar, A.G. Odeshi, and N.P Gurao, Effect of tempering conditions on dynamic deformation behaviour of an aluminium–lithium alloy. Mater. Des. 81 (2015), pp.1–10. doi: 10.1016/j.matdes.2015.04.050
  • J. Johansson, and S. Hopkinson, Influence of microstructure on deformation behaviour of alloy 718. 8th International Symposium on Superalloy 718 and Derivatives. TMS Pittsburgh, PA. 2014.
  • J.J. Demange, V. Prakash, and J.M Pereira, Effects of material microstructure on blunt projectile penetration of a nickel-based super alloy. Int. J. Impact Eng. 36 (2009), pp.1027–1043. doi: 10.1016/j.ijimpeng.2009.01.007
  • J. Johansson, C. Persson, G. Testa, A. Ruggiero, N. Bonora, and M. Hörnqvist Colliander, Effect of microstructure on dynamic shear localisation in alloy 718. Mech. Mater. 109 (2017), pp. 88–100. doi: 10.1016/j.mechmat.2017.03.020
  • D.S. Bergstrom, T.D Bayha, Properties and microstructure allvac® 718PlusTM alloy rolled sheet. Proceedings of the 6th International Symposium on Superalloys 718, 625, 706 and Derivatives 718 (2005), pp. 243–252. Pittsburgh, P.A, October, 2005. doi: 10.7449/2005/Superalloys_2005_243_252
  • W.-D Cao, Thermal stability characterization of Ni-based ATI 718Plus superalloy. Proceedings of the 11th Int'l Symposium Superalloys 2008 (2008), pp. 789–797. Champion, PA. September, 2008. doi: 10.7449/2008/Superalloys_2008_789_797
  • R.M. Kearsey, J. Tsang, S. Oppenheimer, and E McDevitt, Microstructural effects on the mechanical properties of ATI 718Plus alloy. JOM. 64 (2012), pp. 241–251. doi: 10.1007/s11837-012-0242-3
  • K. Schreiber, K. Loehnert, and R.F. Singer, Opportunities and Challenges for the New Nickel Base Alloy 718PlusTM, Proceedings of Second Symposium on Recent Advantages of Nb Containing Materials in Europe: Aerospace Applications - A Technical and Commercial Perspective. Essen, Germany 2006.
  • R. Nakkalu, J.R. Hornaday, and M.N. Bassim, Characterization of the compression properties of rail steels at high temperatures and strain rates. Materials Science and Engineering. 141 (1991), pp. 247–260. doi: 10.1016/0921-5093(91)90774-H
  • D.A. Gorham, P.H. Pope, and J.E. Field, An improved method for compressive stress-strain measurements at very high strain rates. Proc. R. Soc. Lond. A. 438 (1992), pp. 153–170. doi: 10.1098/rspa.1992.0099
  • J.J. DeMange, J.M. Pereira, and V. Prakash, Effects of Heat Treatment on Dynamic Deformation and Failure of Ni Based Superalloys: Modelling the Performance of Engineering Structural Materials III. TMS Columbus, OH, 2002.
  • J. Johansson, C. Persson, S. Hopkinson, Influence of microstructure of alloy 718 on high strain rate deformation. Materials Science and Technology Conference and Exhibition 2013 (2013), pp. 2563–2570. Montreal, QC.
  • R. Schnitzer, S. Zinner, and H Leitner, Modeling of the yield strength of a stainless maraging steel. Scr. Mater. 62 (2009), pp. 286–289. doi: 10.1016/j.scriptamat.2009.11.020
  • S.L. Shang, W.Y. Wang, Y. Wang, S.-L. Shang, H. Zhang, Y. Wang, C.L. Zacherl, H.Z. Fang, Y. Du, and Z.K Liu, Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys. J. Phys.: Condens. Matter. 24 (2012), pp. 505403–505414.
  • P.C.J Gallagher, The influence effects on the of alloying, Temperature, and Related Stacking Fault Energy. Metall. Trans. 1 (1970), pp. 2429–2461.
  • Y.Z. Tian, L.J. Zhao, S. Chen, Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes. Scientific Report. 5(16707) (2015), pp. 1–9.
  • A. Rohatgi, K.S. Vecchio, and G.T. Gray Iii, The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: deformation twinning, work hardening, and dynamic recovery. Metall. Mater. Trans. A. 32A (2001) pp.135–145. doi: 10.1007/s11661-001-0109-7
  • J.C.F. Millett, N.K. Bourne, and G.T. Gray Iii, The behavior of Ni, Ni-60Co, and Ni 3 Al during one-dimensional shock loading. Metall. Mater. Trans. A. 39A (2008) pp. 322–334.
  • J.M. Oblak, D.F. Paulonis, and D.S Duvall, Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates. Metall. Trans. 5 (1974), pp. 143. doi: 10.1007/BF02644342
  • M.C. Chaturvedi, and Y Han, Strengthening mechanisms in inconel 718 superalloy. Metall. Sci. 17 (1983), pp. 145–149. doi: 10.1179/030634583790421032
  • L.K Singhal, Strengthening mechanism in γ’ hardened nickel based alloys. Scr. Metall. 5 (1971), pp. 959–964. doi: 10.1016/0036-9748(71)90136-0
  • V. Munjalt, and A.J Ardellt, Precipitation hardening of Ni-12.19% Al alloy single crystals. Acta Metall. 23 (1975), pp. 513–520. doi: 10.1016/0001-6160(75)90091-7
  • V.A Phillips, Coherency hardening in Ni-Al-Ti alloys. Scr. Metall. 2 (1968), pp. 147–152. doi: 10.1016/0036-9748(68)90213-5
  • A.J. Ardell, D. Chellman, V. Munjalt. Order Hardening Versus Coherency Hardening in Aged Ni-Base Gamma/Gamma Prime Alloys. In 4th Int. Conf. Strength of Metals and Alloys, 1976, 1, 209–213.
  • D.A. Grose, and G.S Ansell, The influence of coherency strain the elevated temperature tensile N i-15Cr-Al-Ti-Mo behavior of alloys. Metall. Trans. A. 12A (1980), pp. 1621–1645.
  • F. Pursche, and L.W Meyer, Correlation between dynamic material behavior and adiabatic shear phenomenon for quenched and tempered steels. Eng. Trans. 59 (2011), pp. 67–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.