192
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Study on the effect of Ar9+ ion irradiation of Zr–2.5 wt.% Nb alloy pressure tube

, , , , , , , & show all
Pages 438-467 | Received 18 Nov 2017, Accepted 21 Oct 2018, Published online: 17 Nov 2018

References

  • M. Mihalache, V. Ionescu, T. Meleg, and M. Pavelescu, Study of microstructure of oxidized Zr-2.5%Nb subjected to thermal transient treatments, Rom. J. Phys. 56 (2011), pp. 952–962.
  • P.S. Chowdhury, P. Mukherjee, N. Gayathri, M. Bhattaahary, A. Chatterjee, P. Barat, and P.M.G. Nambissan, Post irradiated microstructural characterization of Zr–1Nb alloy by X-ray diffraction technique and positron annihilation spectroscopy, Bull. Mater. Sci. 34 (2011), pp. 507–513. doi: 10.1007/s12034-011-0120-6
  • M. Mihalache, V. Radu, D. Ohai, Microstructural changes in Zr-2.5Nb due to the local thermal transients. UPB Sci. Bull. Ser. B. 72 (2010), pp. 185–196.
  • S.J. Zinkle and G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (2013), pp. 735–758. doi: 10.1016/j.actamat.2012.11.004
  • R.K. Sinha and K. Madhusoodanan, Fitness for service assessment of coolant channels of Indian PHWRs, J. Nucl. Mater. 383 (2008), pp. 14–21. doi: 10.1016/j.jnucmat.2008.08.027
  • P.P. Nanekar, M.D. Mangsulikar, J. Cleveland, and B.K. Shas, Flaw characterization in PHWR pressure tubes by ultrasonics: India's experience during IAEA CRP, A-PCNDT 2006 – Asia-Pacific Conference NDT, Nov 2006, Auckland, New Zealand, 2006.
  • H. Wiedersich, P.R. Okamoto, and N.Q. Lam, A theory of radiation-induced segregation in concentrated alloys, J. Nucl. Mater. 83 (1979), pp. 98–108. doi: 10.1016/0022-3115(79)90596-8
  • L.M. Howe, D. Phillips, H. Zou, J. Forster, R. Siegele, J.A. Davies, A.T. Motta, J.A. Faldowaski, and P.R. Okamoto, Application of ion-beam-analysis techniques to the study of irradiation damage in zirconium alloys, Nucl. Instr. Methods Phys. Res. B 118 (1996), pp. 663–669. doi: 10.1016/0168-583X(96)80117-0
  • H. Matzke, Radiation damage effects in nuclear materials, Nucl. Instr. Methods Phys. Res. B 32 (1988), pp. 455–470. doi: 10.1016/0168-583X(88)90256-X
  • M. Griffiths, A review of microstructure evolution in zirconium alloys during irradiation, J. Nucl. Mater. 159 (1988), pp. 190–218. doi: 10.1016/0022-3115(88)90093-1
  • P.H. Davies, R.R. Hosbonsr, M. Griffiths, and C.K. Chow, Correlation between irradiated and unirradiated fracture toughness of Zr–2.5Nb pressure tubes, Zirconium in the Nuclear Industry: 10th International Symposium, 1993, pp. 135–167.
  • M.H. Koike, T. Akiyamak, K. Nagamatsu, and I. Shibahara, Change of mechanical properties by irradiation and evaluation of the Heat Treated Zr-2.5Nb pressure TUbe, Zirconium in the Nuclear Industry: 10th International Symposium, 1993, pp. 183–201.
  • R.G. Fleck, J.E. Elder, A.R. Causey, and R.A. Holt, Variability of irradiation growth in Zr–2.5Nb pressure tubes, Zirconium in the Nuclear Industry: 10th International Symposium, 1993, pp. 168–182.
  • R.A. Holt and A.R. Causey, Volume conservation during irradiation growth of Zr – 2 . 5Nb, J. Nucl. Mater. 335 (2004), pp. 529–533. doi: 10.1016/j.jnucmat.2004.07.042
  • C.D. Cann, C.B. So, R.C. Styles, and C.E. Coleman, Precipitation enhanced by proton irradiation, J. Nucl. Mater. 205 (1993), pp. 267–272. doi: 10.1016/0022-3115(93)90089-H
  • D.D. Himbeault, C.K. Chow, and M.P. Puls, Deformation Behavior of Irradiated Zr-2.5Nb Pressure Tube Material, Metall. Trans. A 25A (1994), pp. 135–145. doi: 10.1007/BF02646682
  • R.A. Holt, In-reactor deformation of cold-worked Zr-2.5Nb pressure tubes, Journal of Nuclear Materials, J. Nucl. Mater. 372 (2008), pp. 182–214. doi: 10.1016/j.jnucmat.2007.02.017
  • F. Long, L. Balogh, D.W. Brown, P. Mosbrucker, T. Skippon, C.D. Judge, and M.R. Daymond, Effect of neutron irradiation on deformation mechanisms operating during tensile testing of Zr-2.5Nb, Acta Mater.102 (2016), pp. 352–363. doi: 10.1016/j.actamat.2015.09.032
  • A. Devi, R. Menon, P. Maheshwari, S. Neogy, P. Mukherjee, P.Y. Nabhiraj, D. Srivastava, and G.K. Dey, Positron Annihilation Study of Zr-2.5 wt.% Nb alloy Irradiated by Ar + heavy ions, J. Phys. Conf. Ser. 618 (2015), pp. 7–11. doi: 10.1088/1742-6596/618/1/012018
  • B. Bose and R.J. Klassen, Effect of ion irradiation and indentation depth on the kinetics of deformation during micro-indentation of Zr – 2.5 % Nb pressure tube material at 25 ° C, J. Nucl. Mater. 399 (2010), pp. 32–37. doi: 10.1016/j.jnucmat.2009.12.019
  • G.S. Was, Fundamentals of Radiation Materials Science, Metal and Alloys, Springer, New York, 2007, pp. 1–839.
  • D.Q. Peng, X.D. Bai, and F. Pan, Irradiation simulation of zirconium using high energy argon implantation, Phys. B Condens. Matter 391 (2007), pp. 72–78. doi: 10.1016/j.physb.2006.08.052
  • X.D. Bai and F. Pan, Surface analysis of argon-implanted zircalloy-2 and influence of bubble formation on the corrosion behavior, Vacuum 81 (2006), pp. 507–516. doi: 10.1016/j.vacuum.2006.07.014
  • M. Nastasi, J.W. Mayer, Ion Implantation and Synthesis of Materials, Springer, Berlin, 2006, pp. 12–271.
  • N. Saibaba, K. Vaibhaw, S. Neogy, K.V.M. Krishna, S.K. Jha, C.P. Babu, S.V.R. Rao, D. Srivastava, and G.K. Dey, Study of microstructure , texture and mechanical properties of Zr –2.5Nb alloy pressure tubes fabricated with different processing routes, J. Nucl. Mater. 440 (2013), pp. 319–331. doi: 10.1016/j.jnucmat.2013.03.069
  • J.F. Ziegler, M. Ziegler, and J. Biersack, SRIM – the stopping and range of ions in matter, Nucl. Instr. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 310 (2013), pp. 75–80. doi: 10.1016/j.nimb.2013.05.008
  • V. Uglov, V. Skuratov, T. Ulyanenkova, A. Benediktovitch, A. Ulyanenkov, and S. Zlotski, Residual Stress State in Oxide Dispersive Steel due to Irradiation by Swift Heavy Ions, Adv. Mater. Res. 996 (2014), pp. 22–26. doi: 10.4028/www.scientific.net/AMR.996.22
  • M. Marciszko, A. Baczmański, M. Wróbel, W. Seiler, C. Braham, J. Donges, M. Sniechowski, and K. Wierzbanowski, Multireflection grazing incidence diffraction used for stress measurements in surface layers, Thin Solid Films 530 (2013), pp. 81–84. doi: 10.1016/j.tsf.2012.05.042
  • D. Kohli, R. Rakesh, V.P. Sinha, G.J. Prasad, and I. Samajdar, Fabrication of simulated plate fuel elements: Defining role of stress relief annealing, J. Nucl. Mater. 447 (2014), pp. 150–159. doi: 10.1016/j.jnucmat.2014.01.002
  • S. Wronski, K. Wierzbanowski, A. Baczmanski, A. Lodini, C. Braham, and W. Seiler, X-ray grazing incidence technique – corrections in residual stress measurement – a review, JCPDS – International Cent. Diffr. Data., 2009, 1097-0002.
  • A. Baczmański, C. Braham, W. Seiler, and N. Shiraki, Microstresses in textured polycrystals studied by the multireflection diffraction method and self-consistent model, Surf. Coat. Technol. 182 (2004), pp. 43–544. doi: 10.1016/j.surfcoat.2003.07.005
  • Z. Chen, N. Prud’homme, B. Wang, and V. Ji, Residual stress gradient analysis with GIXRD on ZrO2 thin films deposited by MOCVD, Surf. Coat. Technol., Surf. Coat. Technol. 206 (2011), pp. 405–410. doi: 10.1016/j.surfcoat.2011.07.036
  • ASTM, Standard Test Method for Residual Stress Measurement by X-Ray Diffraction for: ASTM International, 2014, pp. 1–18.
  • R. Krause-Rehberg, V. Bondarenko, E. Thiele, R. Klemm, and N. Schell, Determination of absolute defect concentrations for saturated positron trapping-Deformed polycrystalline Ni as a case study, Nucl. Instr. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 204 (2005), pp. 719–725. doi: 10.1016/j.nimb.2005.04.130
  • P. Rangaswamy, M.B. Prime, M. Daymond, M.A.M. Bourke, B. Clausen, H. Choo, and N. Jayaraman, Comparison of residual strains measured by X-ray and neutron diffraction in a titanium (Ti–6Al–4V) matrix composite, Mater. Sci. Eng. A 259 (1999), pp. 209–219. doi: 10.1016/S0921-5093(98)00893-4
  • U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, and E.J. Mittemeijer, Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction, J. Appl. Cryst. 38 (2005), pp. 1–29. doi: 10.1107/S0021889804029516
  • H. Wawraz, The Kröner-limits of the elastic moduli of technically important materials, Z. Metallked 69 (1978), pp. 518–523.
  • A.C. Vermeulen, E. Hutman, Stress Tensor Full Tensor Analysis and Stress State Constraints. 20, Mater. Sci. Forum 347–349 (2000), pp. 17–22. doi: 10.4028/www.scientific.net/MSF.347-349.17
  • G. Caglioti, A. Paoletti, and P.F. Ricci, Choice of collimators for a crystal spectrometer for neutron diffraction, Nucl. Instr. Methods 35 (1958), pp. 223–226. doi: 10.1016/0369-643X(58)90029-X
  • G. Sharma, P. Mukherjee, A. Chatterjee, N. Gayathri, A. Sarkar, and J.K. Chakravartty, Study of the effect of α irradiation on the microstructure and mechanical properties of nanocrystalline Ni, Acta Mater. 61 (2013), pp. 3257–3266. doi: 10.1016/j.actamat.2013.02.014
  • R.A. Young and D.B. Wiles, Profile shape functions in Rietveld refinements, J. Appl. Cryst. 15 (1982), pp. 430–438. doi: 10.1107/S002188988201231X
  • E.J. Mittemeijer and U. Welzel, The “state of the art” of the diffraction analysis of crystallite size and lattice strain, Vol. 223, Max Planck Institute for Metals Research, Stuttgart, Germany, 2008, pp. 552–560.
  • M. Meier, Measuring crystallite size using x-ray diffraction, the Williamson–Hall method, Department of Chemical Engineering and Materials Science, University of California, 2005.
  • H. Search, C. Journals, A. Contact, and M. Iopscience, On variance as a measure of line broadening in diffractometry III. A note on dislocations. Proc. Phys. Soc. 82 (1963), p. 986. doi: 10.1088/0370-1328/82/6/318
  • A. Borbély and T. Ungár, X-ray line profiles analysis of plastically deformed metals, C. R. Phys. 13 (2012), pp. 293–306. doi: 10.1016/j.crhy.2011.12.004
  • I. Groma, X-ray line broadening due to an inhomogeneous dislocation distribution, Am. Phys. Soc. 57 (1998), pp. 7535–7542.
  • T. Ungar, O. Castelnau, G. Ribarik, M. Drakopoulos, J.L. Bechade, T. Chauveau, A. Snigirev, I. Snigireva, C. Schroer, and B. Bacroix, Grain to grain slip activity in plastically deformed Zr determined by X-ray micro-diffraction line profile analysis, Acta Mater. 55 (2007), pp. 1117–1127. doi: 10.1016/j.actamat.2006.09.031
  • W.C. Oliver, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, 2004.
  • W. Qiang-Mao, S. Guo-Gang, W. Rong-Shan, D. Hui, P. Xiao, and Z. Qi, Characterization of proton irradiation-induced defect in the A508-3 steel by slow positron beam, Nucl. Instr. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 287 (2012), pp. 148–152. doi: 10.1016/j.nimb.2012.04.013
  • P.S. Prevéy , Current applications of X-ray diffraction residual stress measurement. Lambda Technologies. www.lambdatechs.com.
  • B.B. He, Two-Dimensional X-ray Diffraction, Wiley, Hoboken, NJ, 2009.
  • S. Vives, E. Gaffet, and C. Meunier, X-ray diffraction line profile analysis of iron ball milled powders, Mater. Sci. Eng. A 366 (2004), pp. 229–238. doi: 10.1016/S0921-5093(03)00572-0
  • Z.L. Pan, N. Wang, Z. He, Measurement of elastic modulus in Zr alloys for CANDU applications, 11th International Conference on CANDU Fuel, Niagara Falls, Ontario, Canada, 2010, pp. 17–20.
  • R. Bott, Radiation physics of metals and its applications, Igarss 2014 (2014), pp. 1–5.
  • S. Takamura and M. Kobiyama, Recovery stages in Mg, Zr and Ti after neutron irradiation at low temperature, Radiat. Effects 49 (1980), pp. 247–250. doi: 10.1080/00337578008237489
  • P. Mukherjee, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chottopadhyay, S.K. Chatterjee, and M.K. Mitra, Characterisation of microstructural parameters in oxygen-irradiated Zr-1.0%Nb-1.0%Sn-0.1%Fe, J. Nucl. Mater. 305 (2002), pp. 169–174. doi: 10.1016/S0022-3115(02)00933-9
  • J.A.N. Kocik, Radiation Damage of Structural Materials, Elsevier, London, 1994.
  • A. Sarkar, P. Mukherjee, P. Barat, Effect of heavy ion irradiation on microstructure of zirconium alloy characterised by X-ray diffraction, J. Nucl. Mater. 372 (2008), pp. 285–292. doi: 10.1016/j.jnucmat.2007.03.217
  • M. Li, M.A. Kirk, P.M. Baldo, D. Xu, and B.D. Wirth, Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling, Philos. Mag., Philos. Mag. 92 (2012), pp. 2048–2078. doi: 10.1080/14786435.2012.662601
  • L. Kurpaska, M. Gapinska, J. Jasinski, M. Lesniak, M. Sitarz, K.N. Langier, J. Jagielski, and K. Wozniak, In fluence of Ar-irradiation on structural and nanomechanical properties of pure zirconium measured by means of GIXRD and nanoindentation techniques, J. Mol. Struct. 1126 (2016), pp. 1–6. doi: 10.1016/j.molstruc.2016.07.085
  • R.L. Snyder, J. Fiala, and H.J. Bunge, Defect and Microstructure Analysis by Diffraction; International Union of Crystallography, Oxford University Press, New York, 1999.
  • J.J. Koi, W.I. Huang, and H.Y. Chou, The microstructural evolution of zircaloy-4 subjected to proton irradiation, J. Nucl. Mater. 170 (1990), pp.193–209. doi: 10.1016/0022-3115(90)90412-G
  • G. Ribárik, T. Ungár, and J. Gubicza, MWP-fit: a program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions, J. Appl. Cryst. 34 (2001), pp. 669–676. doi: 10.1107/S0021889801011451
  • J.I. Langford and D. Louer, Reports on Progress in Physics Related content Non-sticking drops Non-sticking drops, Rep. Prog. Phys. 59 (1996), pp. 131–234. doi: 10.1088/0034-4885/59/2/002
  • S. Yamada and T. Kameyama, Observation of c-component dislocation structures formed in pure Zr and Zr-base alloy by self-ion accelerator irradiation, J. Nucl. Mater. 422 (2012), pp. 167–172. doi: 10.1016/j.jnucmat.2011.12.035
  • L. Tournadre, F. Onimus, J.L. Bechade, D. Gilbon, J.M. Cloue, J.P. Mardon, X. Feaugas, O. Toader, and C. Bachelet, Experimental study of the nucleation and growth of c-component loops under charged particle irradiations of recrystallized Zircaloy-4, J. Nucl. Mater. 425 (2012), pp. 76–82. doi: 10.1016/j.jnucmat.2011.11.061
  • Y. Idrees, Z. Yao, M. Sattari, M.A. Kirk, and M.R. Daymond, Daymond, Irradiation induced microstructural changes in Zr-Excel alloy, J. Nucl. Mater. 441 (2013), pp. 138–151. doi: 10.1016/j.jnucmat.2013.05.036
  • Y. Idrees, Z. Yao, M.A. Kirk, and M.R. Daymond, In situ study of defect accumulation in zirconium under heavy ion irradiation, J. Nucl. Mater. 433 (2013), pp. 95–107. doi: 10.1016/j.jnucmat.2012.09.014
  • M. Griffiths, M.H. Loretto, and R.E. Smallman, Electron damage in zirconium - Ι . defect structure and loop character, J. Nucl. Mater. 115 (1983), pp. 313–322. doi: 10.1016/0022-3115(83)90322-7
  • S.I.L. Choi and J.I.H. Kim, Radiation-induced dislocation and growth behavior of zirconium and zirconium alloys – a review, Nucl. Eng. Technol. 45 (2013), pp. 385–392. doi: 10.5516/NET.07.2013.035
  • A. Jostsons, P.M. Kelly, and R.G. Blake, The nature of dislocation loops in neutron irradiated zirconium, J. Nucl. Mater. 66 (1977), pp. 236–256. doi: 10.1016/0022-3115(77)90113-1
  • Y.D. Carlan, C. Regnard, M. Griffiths, and D. Lemaignan, Nuclear Industry: 11th International Symposium, ASTM STP, Vol. 1295, 1996, pp. 638–653.
  • R. Nowak, K. Ueno, and M. Kinoshita, Indentation fracture of pure and MeV energy ion implanted sapphire, in Fracture Mechanics of Ceramics, vol. 10, R.C. Bradt, D.P.H. Hasselman, D. Munz, M. Sakai, and V.Y. Shevchenko, eds., Springer, Boston, MA, 1992.
  • Q. Wang, K. Ozaki, H. Ishikawa, S. Nakano, and H. Ogiso, Indentation method to measure the residual stress induced by ion implantation by ion implantation, Nucl. Instr. Methods Phys. Res. B 242 (2006), pp. 88–92. doi: 10.1016/j.nimb.2005.08.008
  • R.M. Hengstler-Eger, P. Baldo, L. Beck, J. Dorner, K. Ertl, P.B. Hoffmann, C. Hugenschmidt, M.A. Kirk, W. Petry, P. Pikart, and A. Rempel, Heavy ion irradiation induced dislocation loops in AREVA ' s M5 Ò alloy, J. Nucl. Mater. 423 (2012), pp. 170–182. doi: 10.1016/j.jnucmat.2012.01.002
  • D. Lee and E.F. Koch, Irradiation damage in Zircaloy-2 produced by high-dose ion bombardment, J. Nucl. Mater. 50 (1974), pp. 162–174. doi: 10.1016/0022-3115(74)90153-6
  • B. Burton and M.V. Speight, The coarsening and annihilation kinetics of dislocation loop, Philos. Mag. A 53 (1986), pp. 385–402. doi: 10.1080/01418618608242839
  • I.M. Robertson, J.S. Vetrano, M.A. Kirk, M.L. Jenkins, Philos. Mag. A 63 (1991), pp. 299–318. doi: 10.1080/01418619108204851
  • M. Wilkens, Theoretical aspects of kinematical X-ray diffraction profiles from crystals containing dislocation distributions, in Fundamental Aspects of Dislocation Theory, J. Simmons, R. De Wit and R. Bullough, eds., U.S. National Bureau of Standards, Washington, 1970, pp. 1195–1221.
  • A. Borbély, J. Dragomir-Cernatescu, G. Ribárik, and T. Ungár, Computer program ANIZC for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals, J. Appl. Cryst. 36 (2003), pp. 160–162. doi: 10.1107/S0021889802021581
  • R. Konings, T.R. Allen, R.E. Stoller, and S. Yamanaka, Comprehensive Nuclear Materials, 1st ed., Elsevier Science, Oxford, 2012.
  • R. Sizmann, Efficiency of defect production in cascades, J. Nucl. Mater. 69–70 (1978), pp. 386–412. doi: 10.1016/0022-3115(78)90256-8
  • Q. Xu, Y.X. Wang, Y. Katakabe, H. Iwakiri, N. Yoshida, K. Sato, and T. Yoshiie, Annihilation of interstitial-type dislocation loops in α-Fe during He irradiation, J. Nucl. Mater. 417 (2011), pp. 1022–1025. doi: 10.1016/j.jnucmat.2011.01.089
  • W. Van Renterghem, D. Terentyev, and M.J. Konstantinovic, Transmission electron analysis of dislocation loops in T91 steels from MEGAPIE and MIRE irradiation experiments, J. Nucl. Mater. 506 (2018), pp. 43–52. doi: 10.1016/j.jnucmat.2017.10.045
  • A.K. Revelly, H.W. Becker, B. Vishwanadh, K.V. Mani Krishna, R. Tewari, D. Srivastava, G.K. Dey, I. Samajdar, and A.S. Panwar, High-purity Zirconium under Niobium ion implantation: Possibility of a dynamic precipitation, Philos. Mag. 95 (2015), pp. 3727–3744. doi: 10.1080/14786435.2015.1085132
  • C. Yan, R. Wang, X. Dai, Y. Wang, and X. Wang, Investigation of hardening behavior in Xe ion-irradiated Zr-1Nb, J. Nucl. Mater. 473 (2016), pp. 256–2633. doi: 10.1016/j.jnucmat.2016.03.003
  • P. Dayal, D. Bhattacharyya, W.M. Mook, E.G. Fu, Y.Q. Wang, D.G. Carr, O. Anderoglu, N.A. Mara, A. Misra, R.P. Harrison, and L. Edwards, Effect of double ion implantation and irradiation by Ar and He ions on nano-indentation hardness of metallic alloys, J. Nucl. Mater. 438 (2013), pp.108–115. doi: 10.1016/j.jnucmat.2013.02.078
  • C. Heintze, F. Bergner, S. Akhmadaliev, and E. Altstadt, Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening, J. Nucl. Mater. 33 (2013), p. 174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.