1,475
Views
35
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructure-electrochemical property correlation in electrodeposited CuFeNiCoCr high-entropy alloy-graphene oxide composite coatings

, &
Pages 718-735 | Received 12 Oct 2018, Accepted 28 Nov 2018, Published online: 06 Dec 2018

References

  • Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014), pp. 1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • J.W. Yeh, Recent progress in high entropy alloys, Ann. Chim. Sci. Mater. 31 (2006), pp. 633–648. doi: 10.3166/acsm.31.633-648
  • B.S. Murty, J.W. Yeh, S. Ranganathan, High-entropy Alloys Butterworth-Heinemann, Elsevier, London, England 2014.
  • V. Soare, M. Burada, I. Constantin, D. Mitrică, V. Bădiliţă, A. Caragea, and M. Târcolea, Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films, Appl. Surf. Sci. 358 (2015), pp. 533–539. doi: 10.1016/j.apsusc.2015.07.142
  • H. Zhang, Y. Pan, and Y.Z. He, Synthesis and characterization of FeCoNiCrCu high entropy alloy coating by laser cladding, Mater. Des. 32 (2011), pp. 1910–1915. doi: 10.1016/j.matdes.2010.12.001
  • L. Xie, P. Brault, A.L. Thomann, and J.M. Bauchire, Alcocrcufeni high entropy alloy cluster growth and annealing on silicon: a classical molecular dynamics simulation study, Appl. Surf. Sci. 285P (2013), pp. 810–816. doi: 10.1016/j.apsusc.2013.08.133
  • W.Y. Tang and J.W. Yeh, Effect of aluminum content on plasma-nitrided AlxCoCrCuFeNi high-entropy alloys, Metall. Mater. Trans. A, 40A (2009), pp. 1479–1486. doi: 10.1007/s11661-009-9821-5
  • V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, and P. Gillon, Complex structure / composition relationship in thin films of AlCoCrCuFeNi high entropy alloy, Mater. Chem. Phys. 117 (2009), pp. 142–147. doi: 10.1016/j.matchemphys.2009.05.025
  • Z.F. Wu, X.D. Wang, Q.P. Cao, G.H. Zhao, J.X. Li, D.X. Zhang, J.J. Zhu, and J.Z. Jiang, Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1 (x=0 and 2.5) high entropy alloy films, J. Alloys Compd. 609 (2014), pp. 137–142. doi: 10.1016/j.jallcom.2014.04.094
  • M.Y. Rekha, A. Kamboj, and C. Srivastava, Electrochemical behavior of SnNi-graphene oxide composite coatings, Thin Solid Films, 653 (2018), pp. 82–92. doi: 10.1016/j.tsf.2018.03.020
  • R. Berlia, M.K. Punith Kumar, and C. Srivastava, Electrochemical behavior of Sn-graphene composite coating, RSC Adv. 5 (2015), pp. 71413–71418. doi: 10.1039/C5RA11207A
  • M.K. Punith Kumar, M.P. Singh, and C. Srivastava, Electrochemical behavior of Zn-graphene composite coatings, RSC Adv. 5 (2015), pp. 25603–25608. doi: 10.1039/C5RA02898A
  • D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, B.R. Rogers, and K.I. Bolotin, Graphene: corrosion-inhibiting coating, ACS Nano, 6 (2) (2012), pp. 1102–1108. doi: 10.1021/nn203507y
  • C.M. Praveen Kumar, T.V. Venkatesha, and R. Shabadi, Preparation and corrosion behavior of Ni and Ni-graphene composite coatings, Mater. Res. Bull. 48 (2013), pp. 1477–1483. doi: 10.1016/j.materresbull.2012.12.064
  • A. Jabbar, G. Yasin, W.Q. Khan, M.Y. Anwar, R.M. Korai, M.N. Nizam, and G. Muhyodin, Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance, RSC Adv. 7 (2017), pp. 31100–31109. doi: 10.1039/C6RA28755G
  • G. Yasin, M. Arif, M. Shakeel, Y. Dun, Y. Zuo, W.Q. Khan, Y. Tang, A. Khan, and M. Nadeem, Exploring the nickel-graphene nanocomposite coatings for superior corrosion resistance: manipulating the effect of deposition current density on its morphology, mechanical properties, and erosion-corrosion performance, Adv. Eng. Mater. 20 (2018), 1701166. doi: 10.1002/adem.201701166
  • G. Yasin, M. Arif, M.N. Nizam, M. Shakeel, M.A. Khan, W.Q. Khan, T.M. Hassan, Z. Abbas, I. Farahbakhsh, and Y. Zuo, Effect of surfactant concentration in electrolyte on the fabrication and properties of nickel-graphene nanocomposite coating synthesized by electrochemical co-deposition, RSC Adv. 8 (2018), pp. 20039–20047. doi: 10.1039/C7RA13651J
  • M.Y. Rekha, M.K. Punith Kumar, and C. Srivastava, Electrochemical behavior of chromium-graphene composite coating, RSC Adv. 6 (2016), pp. 62083–62090. doi: 10.1039/C6RA06509K
  • R.R. Aburto, L.B. Alemany, T.K. Weldeghiorghis, S. Ozden, Z. Peng, A. Lherbier, A.R.B. Mendez, C.S. Tiwary, J.T. Tijerina, Z. Yan, M. Tabata, J.C. Charlier, J.M. Tour, and P.M. Ajayan, Chemical makeup and hydrophilic behavior of graphene oxide nanoribbons after low-temperature fluorination, ACS Nano. 9 (7) (2015), pp. 7009–7018. doi: 10.1021/acsnano.5b01330
  • L.B. Tong, J.B. Zhang, C. Xu, X. Wang, S.Y. Song, Z.H. Jiang, S. Kamado, L.R. Cheng, and H.J. Zhang, Enhanced corrosion and wear resistances by graphene oxide coating on the surface of Mg-Zn-Ca alloy, Carbon 109 (2016), pp. 340–351. doi: 10.1016/j.carbon.2016.08.032
  • M.M. Rahman, Z.T Jiang, C.Y. Yin, L.S. Chuah, H.L. Lee, A. Amri, B.M. Goh, B.J. Wood, C. Creagh, N. Mondinos, M. Altarawneh, and B.Z. Dlugogorski, Structural thermal stability of graphene oxide-doped copper-cobalt oxide coatings as a solar selective surface, J. Mater. Sci. Tech. 32 (11) (2016), pp. 1179–1191. doi: 10.1016/j.jmst.2016.09.002
  • R. Li, J. Liang, Y. Houab, and Q. Chuab, Enhanced corrosion performance of Zn coating by incorporating graphene oxide electrodeposited from deep eutectic solvent, RSC Adv. 5 (2015), 60698. doi: 10.1039/C5RA11577A
  • D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, Improved synthesis of graphene oxide, ACS Nano. 4 (2010), pp. 4806–4814. doi: 10.1021/nn1006368
  • Z. Mo, Y. Sun, H. Chen, P. Zhang, D. Zuo, Y. Liu, and H. Li, Preparation and characterization of a PMMA/Ce(OH)3, Pr2O3/graphite nanosheet composite, Polymer 4 (2005), pp. 12670–12676. doi: 10.1016/j.polymer.2005.10.117
  • L. Shahriary and A.A. Athawale, Graphene oxide synthesized by using modified hummers approach, Int. J. Renew. Energy Environ. Eng. 2 (2014), pp. 58–63.
  • H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, and X.H. Xia, A green approach to the synthesis of graphene nanosheets, ACS Nano. 3 (2009), pp. 2653–2659. doi: 10.1021/nn900227d
  • Z. Tian-You and Z. Dong, Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication, Bull. Mater Sci. 34 (2011), pp. 25–28. doi: 10.1007/s12034-011-0048-x
  • B.J. Clark, T. Frost, and M.A. Russell, UV Spectroscopy: Techniques, Instrumentation, Data Handling/UV Spectrometry Group, Chapman & Hall, London, 1997, pp. 4.
  • Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, and Z. Zhang, Highly efficient photoluminescent graphene oxide with tunable surface properties, Chem. Commun. 46 (2010), pp. 7319–7321. doi: 10.1039/c0cc02374d
  • D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, Improved synthesis of graphene oxide, ACS Nano. 4 (2010), pp. 4806–4814. doi: 10.1021/nn1006368
  • M.A.V.R. da Silva and M.L.C.C.H. Ferrao, Energetics of metal-oxygen bonds in metal complexes of β-diketones, Pure Appl. Chem. 60 (1988), pp. 1225–1234. doi: 10.1351/pac198860081225
  • E.A. Carter and W. A. Goddard, Early- versus late transition metal oxo bonds: the electronic structure of VO+ and RuO+, J. Phys. Chem. 92 (1988) pp. 2109–2115. doi: 10.1021/j100319a005
  • S. Preveen, B.S. Murty, R.S. Kottada, Alloying behavior in muti-component AlCoCrCuFe and high entropy alloys, Mater. Sci. Eng. A 534 (2012) 83–89. doi: 10.1016/j.msea.2011.11.044
  • B. Wua, Z. Pan, S. Li, D. Cuiuri, D. Ding, and H. Li, The anisotropic corrosion behaviour of wire arc additive manufactured Ti6Al-4 V alloy in 3.5% NaCl solution, Corros. Sci. 137 (2018), pp. 176–183. doi: 10.1016/j.corsci.2018.03.047
  • A.K. Mishra and R. Balasubramaniam, Corrosion inhibition of aluminum alloy 6061 by rare earth chlorides, Corrosion 63(3) (2007), pp. 240–248. doi: 10.5006/1.3278348
  • W. Jin, G. Wang, Z. Lin, H. Feng, W. Li, X. Peng, A.M. Qasim, and P.K. Chu, Corrosion resistance and cytocompatibility of tantalum-surface-functionalized biomedical ZK60 Mg alloy, Corros. Sci. 114 (2017), pp. 45–56. doi: 10.1016/j.corsci.2016.10.021
  • Y. Liu, S. Li, J. Zhang, J. Liu, Z. Han, and L. Ren, Corrosion inhibition of biomimetic super-hydrophobic electrodeposition coatings on copper substrate, Corros. Sci. 94 (2015), pp. 190–196. doi: 10.1016/j.corsci.2015.02.009
  • A.M. Lazar, W.P. Yespica, S. Marcelin, N. Pébère, D. Samélor, C. Tendero, and C. Vahlas, Corrosion protection of 304L stainless steel by chemical vapor deposited alumina coatings, Corros. Sci. 81 (2014), pp. 125 –131. doi: 10.1016/j.corsci.2013.12.012
  • M. Stern and A.L. Geary, Electrochemical polarization I. A theoretical analysis of the shape of polarization curves, J. Electrochem. Soc. 104 (1957), pp. 56–63. doi: 10.1149/1.2428496
  • R. Mishra and R. Balasubramaniam, Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel, Corros. Sci. 46 (2004), pp. 3019–3029. doi: 10.1016/j.corsci.2004.04.007
  • L.K. Wu, J.T. Zhang, J.M. Hu, and J.Q. Zhang, Improved corrosion performance of electrophoretic coatings by silane addition, Corros. Sci. 56 (2012), pp. 58–66. doi: 10.1016/j.corsci.2011.11.018
  • M.J. Allen, V.C. Tung, and R.B. Kaner, Honeycomb carbon: a review of graphene, Chem. Rev. 110 (2009), pp. 132–145. doi: 10.1021/cr900070d
  • L.Y. Cui, R.C. Zeng, S.Q. Li, F. Zhang, and E.H. Han, Corrosion resistance of layer-bylayer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys, RSC Adv. 6 (2016), pp. 63107–63116. doi: 10.1039/C6RA08613F
  • Y. Zhang, Y. Shao, T. Zhang, G. Meng, and F. Wang, The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of AZ91D magnesium alloy, Corros. Sci. 53 (2011), pp. 3747–3755. doi: 10.1016/j.corsci.2011.07.021
  • L. Freire, M.J. Carmezim, M.G.S. Ferreira, and M.F. Montemor, The passive behaviour of AISI 316 in alkaline media and the effect of pH: a combined electrochemical and analytical study, Electrochim. Acta 55 (2010), pp. 6174–6181. doi: 10.1016/j.electacta.2009.10.026
  • C. Srivastava, Phase separation by nanoparticle splitting, Mater. Let. 70 (2012) 122–124. doi: 10.1016/j.matlet.2011.11.079
  • M. A. Raza, Z. U. Rehman, F. A. Ghauri, A. Ahmad, R. Ahmad, and M. Raffi, Corrosion study of electrophoretically deposited graphene oxide coatings on copper metal, Thin Solid Films, 620 (2016), pp. 150–159. doi: 10.1016/j.tsf.2016.09.036
  • Y. Su, V.G. Kravets, S.L. Wong, J. Waters, A.K. Geim, and R.R. Nair, Impermeable barrier films and protective coatings based on reduced graphene oxide, Nature Commun. 5 (2014), pp. 4843 (1–5). doi: 10.1038/ncomms5843

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.