224
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Phase transition of ZrN under pressure

Pages 942-955 | Received 29 Jun 2018, Accepted 04 Dec 2018, Published online: 14 Jan 2019

References

  • T.T. Oyama, Introduction to the chemistry of transition metal carbides and nitrides, in The Chemistry of Transition Metal Carbides and Nitrides, Springer, Dordrecht, 1996. pp. 1–27
  • P. Blaha, J. Redinger and K. Schwarz, Bonding study of TiC and TiN. II. theory. Phys. Rev B 31 (1985), pp. 2316–2325. doi: 10.1103/PhysRevB.31.2316
  • J. Häglund, A. Fernández Guillermet, G. Grimvall and M. Körling, Theory of bonding in transition-metal carbides and nitrides. Phys. Rev B. 48 (1993), pp. 11685–11691. doi: 10.1103/PhysRevB.48.11685
  • V.P. Zhukov, V.A. Gubanov, O. Jepsen, N.E. Christensen and O.K. Andersen, Calculated energy-band structures and chemical bonding in titanium and vanadium carbides, nitrides and oxides. J. Phys. Chem. Solids 49 (1988), pp. 841–849. doi: 10.1016/0022-3697(88)90037-6
  • H. Holleck, Material selection for hard coatings. J. Vac. Sci. Technol. A 4 (1986), pp. 2661–2669. doi: 10.1116/1.573700
  • K. Inumaru, T. Ohara, K. Tanaka and S. Yamanaka, Layer-by-layer deposition of epitaxial TiN–CrN multilayers on MgO (0 0 1) by pulsed laser ablation. Appl. Surf. Sci. 235 (2004), pp. 460–464. doi: 10.1016/j.apsusc.2004.03.260
  • D.J. Kim, Y.R. Cho, M.J. Lee, J.M. Hong, Y.K. Kim and K.H. Lee, Properties of TiN–TiC multilayer coatings using plasma-assisted chemical vapor deposition. Surf. Coat. Technol. 116 (1999), pp. 906–910. doi: 10.1016/S0257-8972(99)00149-8
  • X. Chen, V.V. Struzhkin, Z. Wu, M. Somayazulu, J. Qian, S. Kung, A.N. Christensen, et al., Hard superconducting nitrides. Proc. Natl. Acad. Sci. Am. 102 (2005), pp. 3198–3201. doi: 10.1073/pnas.0500174102
  • A.J. Perry, On the existence of point defects in physical vapor deposited films of TiN, ZrN, and HfN. J. Vac. Sci. Technol. A 6 (1988), pp. 2140–2148. doi: 10.1116/1.575205
  • L. Hultman, Thermal stability of nitride thin films. Vacuum 57 (2000), pp. 1–30. doi: 10.1016/S0042-207X(00)00143-3
  • I. Pollini, A. Mosser and J.C. Parlebas, Electronic, spectroscopic and elastic properties of early transition metal compounds. Phys. Rep. 355 (2001), pp. 1–72. doi: 10.1016/S0370-1573(01)00018-7
  • L. Tsetseris, N. Kalfagiannis, S. Logothetidis and S.T. Pantelides, Role of N defects on thermally induced atomic-scale structural changes in transition-metal nitrides. Phys. Rev. Lett. 99 (2007), pp. 125503–125506. doi: 10.1103/PhysRevLett.99.125503
  • L.E. Toth, Transition Metal Carbides and Nitrides, vol. 7 of Refractory Material Series, Academic Press, New York, 1971.
  • S. Yu, Q. Zeng, A.R. Oganov, G. Frapper, B. Huang, H. Niu and L. Zhang, First-principles study of Zr–N crystalline phases: phase stability, electronic and mechanical properties. RSC Adv. 7 (2017), pp. 4697–4703. doi: 10.1039/C6RA27233A
  • M. Chhowalla and H.E. Unalan, Thin films of hard cubic Zr3N4 stabilized by stress. Nat. Mater. 4 (2005), pp. 317–322. doi: 10.1038/nmat1338
  • L. Gribaudo, D. Arias and J. Abriata, The N-Zr (nitrogen-zirconium) system. J. Phase Equilib. 15 (1994), pp. 441–449. doi: 10.1007/BF02647575
  • A. Zerr, G. Miehe and R. Riedel, Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nat. Mater. 2 (2003), pp. 185–189. doi: 10.1038/nmat836
  • P. Kroll, Hafnium nitride with thorium phosphide structure: physical properties and an assessment of the Hf-N, Zr-N, and Ti-N phase diagrams at high pressures and temperatures. Phys. Rev. Lett. 90 (2003), pp. 125501–125504. doi: 10.1103/PhysRevLett.90.125501
  • R. Juza, A. Gabel, H. Rabenau and W. Klose, Über ein blaues Zirkonnitrid. Z. Anorg. Allg. Chem. 329 (1964), pp. 136–145. doi: 10.1002/zaac.19643290117
  • W.H. Baur and M. Lerch, On deciding between space groups Pnam and Pna21 for the crystal structure of Zr3N4. Z. Anorg. Allg. Chem. 622 (1996), pp. 1729–1730. doi: 10.1002/zaac.19966221017
  • M. Burghartz, G. Ledergerber, H. Hein, R.R. Van der Laan and R.J.M. Konings, Some aspects of the use of ZrN as an inert matrix for actinide fuels. J. Nucl. Mater. 288 (2001), pp. 233–236. doi: 10.1016/S0022-3115(00)00722-4
  • H. Randhawa, Hard coatings for decorative applications. Surf. Coat. Technol. 36 (1988), pp. 829–836. doi: 10.1016/0257-8972(88)90023-0
  • A. Singh, N. Kumar, P. Kuppusami, T.N. Prasanthi, P. Chandramohan, S. Dash, M.P. Srinivasan, E. Mohandas and A.K. Tyagi, Tribological properties of sputter deposited ZrN coatings on titanium modified austenitic stainless steel. Wear 280 (2012), pp. 22–27. doi: 10.1016/j.wear.2012.01.013
  • S.M. Aouadi, M. Debessai and P. Filip, Zirconium nitride/silver nanocomposite structures for biomedical applications. J. Vac. Sci. Technol. B 22 (2004), pp. 1134–1140. doi: 10.1116/1.1752905
  • R.W. Harrison and W.E. Lee, Processing and properties of ZrC, ZrN and ZrCN ceramics: a review. Adv. Appl. Ceram. 115 (2016), pp. 294–307. doi: 10.1179/1743676115Y.0000000061
  • A. Srivastava, M. Chauhan and R.K. Singh, Pressure induced phase transitions in transition metal nitrides: Ab initio study. Phys. Status Solidi B 248 (2011), pp. 2793–2800. doi: 10.1002/pssb.201046589
  • A. Srivastava and B.D. Diwan, Structural and elastic properties of ZrN and HfN: ab initio study. Can. J. Phys. 92 (2014), pp. 1058–1061. doi: 10.1139/cjp-2013-0377
  • A.T.A. Meenaatci, R. Rajeswarapalanichamy and K. Iyakutti, Pressure induced phase transition of ZrN and HfN: a first principles study. J. At. Mol. Sci. 4 (2013), pp. 321–335.
  • A. Hao, T. Zhou, Y. Zhu, X. Zhang and R. Liu, First-principles investigations on electronic, elastic and thermodynamic properties of ZrC and ZrN under high pressure. Mater. Chem. Phys. 129 (2011), pp. 99–104. doi: 10.1016/j.matchemphys.2011.03.060
  • P. Ojha, M. Aynyas and S.P. Sanyal, Pressure-induced structural phase transformation and elastic properties of transition metal mononitrides. J. Phys. Chem. Solids 68 (2007), pp. 148–152. doi: 10.1016/j.jpcs.2006.09.022
  • W. Chen and J.Z. Jiang, Elastic properties and electronic structures of 4d-and 5d-transition metal mononitrides. J. Alloys Comp. 499 (2010), pp. 243–254. doi: 10.1016/j.jallcom.2010.03.176
  • C. Stampfl, W. Mannstadt, R. Asahi and A.J. Freeman, Electronic structure and physical properties of early transition metal mononitrides: density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Phys. Rev. B 63 (2001), pp. 155106–155116. doi: 10.1103/PhysRevB.63.155106
  • E.K. Abavare, M.K. Donkor, S.N. Dodoo, O. Akoto, F.K. Ampong, B. Kwaakye-Awuah and R.K. Nkum, Indirect phase transition of refractory nitrides compounds of: TiN, ZrN and HfN crystal structures. Comput. Mater. Sci. 137 (2017), pp. 75–84. doi: 10.1016/j.commatsci.2017.04.038
  • V.I. Ivashchenko, P.E.A. Turchi and V.I. Shevchenko, Phase transformation B1 to B2 in TiC, TiN, ZrC and ZrN under pressure. Condens. Matter Phys. 3 (2013), pp. 33602–33610. doi: 10.5488/CMP.16.33602
  • S.T. Weir, Y.K. Vohra and A.L. Ruoff, High-pressure phase transitions and the equations of state of BaS and BaO. Phys. Rev. B 33 (1986), pp. 4221–4226. doi: 10.1103/PhysRevB.33.4221
  • G. Rousse, S. Klotz, A.M. Saitta, J. Rodriguez- Carvajal, M.I. McMahon, B. Couzinet and M. Mezouar, Structure of the intermediate phase of PbTe at high pressure. Phys. Rev. B 71 (2005), pp. 224116–224121. doi: 10.1103/PhysRevB.71.224116
  • A.L. Ruoff, T. Li T, A.C. Ho, M.F. Pai, R.G. Greene, C. Narayana, J.C. Molstad, S.S. Trail, F.J. Jr. DiSalvo and P.E. van Camp, Sevenfold coordinated MgSe: experimental internal atom position determination to 146 GPa, diffraction studies to 202 GPa, and theoretical studies to 500 GPa. Phys. Rev. Lett. 81 (1998), pp. 2723–2726. doi: 10.1103/PhysRevLett.81.2723
  • M. Durandurdu, High-pressure phase transitions of TiN: an ab initio constant pressure study. Philos. Mag. 95 (2015), pp. 2376–2384. doi: 10.1080/14786435.2015.1056855
  • J.G. Zhao, L.X. Yang, Y. Yu, S.J. You, R.C. Yu, F.Y. Li, L.C. Chen, C.Q. Jin, X.D. Li, Y.C. Li and J. Liu, Isostructural phase transition of TiN under high pressure. Chin. Phys. Lett. 22 (2005), pp. 1199–1201. doi: 10.1088/0256-307X/22/5/048
  • A.D. Becke, Density functional exchange energy approximation with correct asymptotic behavior. Phys. Rev. A 38 (1988), pp. 3098–3100. doi: 10.1103/PhysRevA.38.3098
  • C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37 (1988), pp. 785–789. doi: 10.1103/PhysRevB.37.785
  • N. Troullier and J.M. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43 (1991), pp. 993–2006. doi: 10.1103/PhysRevB.43.993
  • P. Ordejón, E. Artacho and J.M. Soler, Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 53 (1996), pp. R10441–R10444. doi: 10.1103/PhysRevB.53.R10441
  • M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52 (1981), pp. 7182–7190. doi: 10.1063/1.328693
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976), pp. 5188–5192. doi: 10.1103/PhysRevB.13.5188
  • R. Hundt, J.C. Schön, A. Hannemann and M. Jansen, Determination of symmetries and idealized cell parameters for simulated structures. J. Appl. Crystallogr. 32 (1999), pp. 413–416. doi: 10.1107/S0021889898015763
  • S. Zhang and N.-X. Chen, Molecular dynamics simulations for high-pressure induced B1–B2 transition in NaCl by möbius pair potentials, Model. Simul. Mater. Sci. Eng. 11 (2003), pp. 331–338. doi: 10.1088/0965-0393/11/3/306
  • D.M. Teter, Computational alchemy: The search for new superhardmaterials. Mrs. Bull., 23 (1998), pp. 22–27. doi: 10.1557/S0883769400031420
  • X.Q. Chen, H. Niu, D. Li and Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19 (2011), pp. 1275–1281. doi: 10.1016/j.intermet.2011.03.026
  • Y. Tian, B. Xu and Z. Zhao, Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33 (2012), pp. 93–106. doi: 10.1016/j.ijrmhm.2012.02.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.