370
Views
11
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Pressure-dependence of mechanical and thermodynamic properties of Al3Zr in Al–Li alloys from first-principles calculations

, , , , , , & show all
Pages 971-991 | Received 24 Jun 2018, Accepted 05 Jan 2019, Published online: 27 Jan 2019

References

  • H. Ovri, and E.T. Lilleodden, New insights into plastic instability in precipitation strengthened Al-Li alloys, Acta Mater. 89 (2015), pp. 88–97. doi: 10.1016/j.actamat.2015.01.065
  • C. Gao, R.Q. Gao, and Y. Ma, Microstructure and mechanical properties of friction spot welding aluminium-lithium 2A97 alloy, Mater. Des. 83 (2015), pp. 719–727. doi: 10.1016/j.matdes.2015.06.013
  • R. Yoshimura, T.J. Konno, E. Abe, and K. Hiraga, Transmission electron microscopy study of the evolution of precipitates in aged Al-Li-Cu alloys: the theta ‘ and T-1 phases, Acta Mater. 51 (2003), pp. 4251–4266. doi: 10.1016/S1359-6454(03)00253-2
  • S.C. Wang, and M.J. Starink, Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys, Int. Mater. Rev. 50 (2005), pp. 193–215. doi: 10.1179/174328005X14357
  • H. Liu, Y. Hu, C. Dou, and D.P. Sekulic, An effect of the rotation speed on microstructure and mechanical properties of the friction stir welded 2060-T8 Al-Li alloy, Mater. Charact. 123 (2017), pp. 9–19. doi: 10.1016/j.matchar.2016.11.011
  • C. Gao, Z. Zhu, J. Han, and H. Li, Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al-Li alloy, Mater. Sci. Eng., A 639 (2015), pp. 489–499. doi: 10.1016/j.msea.2015.05.038
  • R.J. Rioja, and J. Liu, The evolution of Al-Li base products for aerospace and space applications, Metall. Mater, Trans. A 43A (2012), pp. 3325–3337. doi: 10.1007/s11661-012-1155-z
  • V. Raghavan, Al-Li-Zr (aluminum-Lithium-zirconium), J. Phase Equilib. 30 (2009), pp. 624–625. doi: 10.1007/s11669-009-9588-9
  • Z.P. Cao, Experimental Investigation and Thermodynamic Modeling of the Sc-Ni, A1-Li-Zr and A1-Sc-Zr Systems in AI Alloys, Central South University, Changsha, 2014
  • J.H. Li, B. Oberdorfer, S. Wurster, and P. Schumacher, Impurity effects on the nucleation and growth of primary Al-3(Sc,Zr) phase in Al alloys, J. Mater. Sci. 49 (2014), pp. 5961–5977. doi: 10.1007/s10853-014-8315-z
  • J.Q. Guo, and K. Ohtera, An intermediate phase appearing in L1(2)-Al3Zr to DO23-Al3Zr phase transformation of rapidly solidified Al-Zr alloys, Mater. Lett. 27 (1996), pp. 343–347. doi: 10.1016/0167-577X(96)00002-X
  • I. Manassidis, and M.J. Gillan, Structure and energetics of alumina surfaces calculated from first principles, J. Am. Ceram. Soc. 77 (1994), pp. 335–338. doi: 10.1111/j.1151-2916.1994.tb07000.x
  • G. Ceder, M.K. Aydinol, and A.F. Kohan, Application of first-principles calculations to the design of rechargeable Li-batteries, Comput. Mater. Sci. 8 (1997), pp. 161–169. doi: 10.1016/S0927-0256(97)00029-3
  • W.-C. Hu, Y. Liu, D.-J. Li, X.-Q. Zeng, and C.-S. Xu, First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf, Comput. Mater. Sci. 83 (2014), pp. 27–34. doi: 10.1016/j.commatsci.2013.10.029
  • H.B. Qin, X.H. Luan, C. Feng, D.G. Yang, and G.Q. Zhang, Mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals, Mater. 10 (2017), p. 15.
  • J. Lee, Y. Ikeda, and I. Tanaka, First-principles screening of structural properties of intermetallic compounds on martensitic transformation, npj Comput. Mater. 3 (2017), p. 52. doi: 10.1038/s41524-017-0053-8
  • Y. Liu, H. Ren, W.-C. Hu, D.-J. Li, X.-Q. Zeng, K.-G. Wang, and J. Lu, First-principles calculations of strengthening compounds in magnesium alloy: a general review, J. Mater. Sci. Technol. 32 (2016), pp. 1222–1231. doi: 10.1016/j.jmst.2016.04.003
  • E. Clouet, J.M. Sanchez, and C. Sigli, First-principles study of the solubility of Zr in Al, Phys. Rev. B 65 (2002). doi: 10.1103/PhysRevB.65.094105
  • C. Amador, J.J. Hoyt, B.C. Chakoumakos, and D. Defontaine, Theoretical and experimental study of relaxation in Al3Ti and Al3Zr ordered phases, Phys. Rev. Lett. 74 (1995), pp. 4955–4958. doi: 10.1103/PhysRevLett.74.4955
  • C. Colinet, and A. Pasturel, Phase stability and electronic structure in ZrAl3 compound, J. Alloys Compd. 319 (2001), pp. 154–161.
  • Y. Liu, W.-C. Hu, D.-j. Li, X.-Q. Zeng, C.-S. Xu, and X.-J. Yang, First-principles investigation of structural and electronic properties of MgCu2 Laves phase under pressure, Intermetallics 31 (2012), pp. 257–263. doi: 10.1016/j.intermet.2012.07.017
  • Q. Wei, Q. Zhang, and M.G. Zhang, Crystal structures and mechanical properties of Ca2C at high pressure, Materials. (Basel) 9 (2016), p. 13.
  • Y. Liu, W.-C. Hu, D.-J. Li, X.-Q. Zeng, C.-S. Xu, and X.-J. Yang, Structural, electronic and thermodynamic properties of BiF3-type Mg3Gd compound: A first-principle study, Phys. B: Condens. Matter 432 (2014), pp. 33–39. doi: 10.1016/j.physb.2013.09.022
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter 14 (2002), pp. 2717–2744. doi: 10.1088/0953-8984/14/11/301
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41 (1990), pp. 7892–7895. doi: 10.1103/PhysRevB.41.7892
  • H.J. Monkhorst, Special points for Brillouin-zone integrations, Phys. Rev. B: Condens. Matter 16 (1977), pp. 1748–1749. doi: 10.1103/PhysRevB.16.1748
  • T.H. Fischer, and J. Almlof, General methods for geometry and wave function optimization, J. Phys. Chem. 96 (1992), pp. 9768–9774. doi: 10.1021/j100203a036
  • J. Feng, B. Xiao, R. Zhou, W. Pan, and D.R. Clarke, Anisotropic elastic and thermal properties of the double perovskite slab-rock salt layer Ln(2)SrAl(2)O(7) (Ln = La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure, Acta Mater. 60 (2012), pp. 3380–3392. doi: 10.1016/j.actamat.2012.03.004
  • W.C. Hu, Y. Liu, X.W. Hu, D.J. Li, X.Q. Zeng, X. Yang, Y.X. Xu, X. Zeng, K.G. Wang, and B. Huang, Predictions of mechanical and thermodynamic properties of Mg17Al12 and Mg2Sn from first-principles calculations, Philos. Mag. 95 (2015), pp. 1626–1645. doi: 10.1080/14786435.2015.1040098
  • Y. Liu, W.-C. Hu, D.-J. Li, X.-Q. Zeng, and C.-S. Xu, Theoretical predictions of the structural and thermodynamic properties of MgZn2 Laves phase under high pressure, Appl. Phys. A 115 (2014), pp. 323–331. doi: 10.1007/s00339-013-7822-0
  • H. Hu, M. Zhao, X. Wu, Z. Jia, R. Wang, W. Li, and Q. Liu, The structural stability, mechanical properties and stacking fault energy of Al3Zr precipitates in Al-Cu-Zr alloys: HRTEM observations and first-principles calculations, J. Alloys Compd. 681 (2016), pp. 96–108. doi: 10.1016/j.jallcom.2016.04.178
  • G. Ghosh, S. Vaynman, M. Asta, and M.E. Fine, Stability and elastic properties of L1(2)-(Al,Cu)(3)(Ti,Zr) phases: Ab initio calculations and experiments, Intermetallics 15 (2007), pp. 44– 54. doi: 10.1016/j.intermet.2006.03.003
  • M.V. Karpets, Y.V. Milman, O.M. Barabash, N.P. Korzhova, O.N. Senkov, D.B. Miracle, T.N. Legkaya, and I.V. Voskoboynik, The influence of Zr alloying on the structure and properties of Al3Ti, Intermetallics 11 (2003), pp. 241–249. doi: 10.1016/S0966-9795(02)00234-0
  • A. Otero-de-la-Roza, D. Abbasi-Perez, and V. Luana, GIBBS2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation, Comput. Phys. Commun. 182 (2011), pp. 2232–2248. doi: 10.1016/j.cpc.2011.05.009
  • B.R. Sahu, Electronic structure and bonding or ultralight LiMg, Mater. Sci. Eng., B 49 (1997), pp. 74–78. doi: 10.1016/S0921-5107(97)00068-8
  • M. Nakamura, and K. Kimura, Elastic constants of TiAl3 and ZrAl3 single crystals, J. Mater. Sci. 26 (1991), pp. 2208–2214. doi: 10.1007/BF00549190
  • R. Hill, The elastic Behaviour of a crystalline Aggregate, Proc. Phys. Soc. 65 (1952), pp. 349–354. doi: 10.1088/0370-1298/65/5/307
  • Y.H. Duan, Y. Sun, M.J. Peng, and S.G. Zhou, Stability, elastic properties and electronic structures of L1(2)-ZrAl3 and D0(22)-ZrAl3 up to 40 GPa, J. Phys. Chem. Solids 75 (2014), pp. 535–542. doi: 10.1016/j.jpcs.2013.12.014
  • Y.H. Duan, B. Huang, Y. Sun, M.J. Peng, and S.G. Zhou, Stability, elastic properties and electronic structures of the stable Zr-Al intermetallic compounds: A first-principles investigation, J. Alloys Compd 590 (2014), pp. 50–60. doi: 10.1016/j.jallcom.2013.12.079
  • S.F. Pugh, XCII. relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag 45 (2009), pp. 823–843 doi: 10.1080/14786440808520496
  • I.N. Frantsevich, F.F. Voronov, and S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, Naukova Dumka, Kiev, 1983.
  • X.-J. Chen, M.-X. Zeng, R.-N. Wang, Z.-S. Mo, B.-Y. Tang, L.-M. Peng, and W.-J. Ding, First-principles study of (Ti5-xMgx)Si-3 phases with the hexagonal D8(8) structure: elastic properties and electronic structure, Comput. Mater. Sci. 54 (2012), pp. 287–292. doi: 10.1016/j.commatsci.2011.10.042
  • P. Ravindran, P. Vajeeston, R. Vidyaet al., Detailed electronic structure studies on superconducting MgB2 and related compounds. Phys. Rev. B 64(22) (2001) doi: 10.1103/PhysRevB.64.224509
  • O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24 (1963), pp. 909–917. doi: 10.1016/0022-3697(63)90067-2
  • E. Schreiber, O.L. Anderson, N. Soga, and J.F. Bell, Elastic constants and their measurement, J. Appl. Mech. 42 (1973), pp. 747–748. doi: 10.1115/1.3423687
  • Y. Liu, W.-C. Hu, D.-J. Li, K. Li, H.-L. Jin, Y.-X. Xu, C.-S. Xu, and X.-Q. Zeng, Mechanical, electronic and thermodynamic properties of C14-type AMg(2) (A = Ca, Sr and Ba) compounds from first principles calculations, Comput. Mater. Sci. 97 (2015), pp. 75–85. doi: 10.1016/j.commatsci.2014.10.005
  • W.-C. Hu, Y. Liu, D.-J. Li, X.-Q. Zeng, and C.-S. Xu, Mechanical and thermodynamic properties of Al3Sc and Al3Li precipitates in Al-Li-Sc alloys from first-principles calculations, Phys. B: Condens. Matter 427 (2013), pp. 85–90. doi: 10.1016/j.physb.2013.06.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.