367
Views
9
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A constitutive model coupling irradiation with two-phase lithiation for lithium-ion battery electrodes

, , , , , & show all
Pages 992-1013 | Received 16 Jul 2018, Accepted 27 Dec 2018, Published online: 23 Jan 2019

References

  • V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energ. Environ. Sci. 4 (2011), pp. 3243–3262. doi: 10.1039/c1ee01598b
  • M.R. Palacín and A. de Guibert, Why do batteries fail? Science 351 (2016), pp. 1253292. doi: 10.1126/science.1253292
  • H. Kim, M. Seo, M.-H. Park, and J. Cho, A critical size of silicon nano-anodes for lithium rechargeable batteries, Angew. Chem. Int. Edit. 49 (2010), pp. 2146–2149. doi: 10.1002/anie.200906287
  • K. Zhao, M. Pharr, J.J. Vlassak, and Z. Suo, Fracture of electrodes in lithium-ion batteries caused by fast charging, J. Appl. Phys. 108 (2010), pp. 073517. doi: 10.1063/1.3492617
  • S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, and C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources 257 (2014), pp. 421–443. doi: 10.1016/j.jpowsour.2013.11.103
  • I. Ryu, J.W. Choi, Y. Cui, and W.D. Nix, Size-dependent fracture of Si nanowire battery anodes, J. Mech. Phys. Solids 59 (2011), pp. 1717–1730. doi: 10.1016/j.jmps.2011.06.003
  • L.-F. Cui, Y. Yang, C.-M. Hsu, and Y. Cui, Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett. 9 (2009), pp. 3370–3374. doi: 10.1021/nl901670t
  • M. Ebner, F. Marone, M. Stampanoni, and V. Wood, Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries, Science 342 (2013), pp. 716–720. doi: 10.1126/science.1241882
  • S. Kim, S.J. Choi, K. Zhao, H. Yang, G. Gobbi, S. Zhang, and J. Li, Electrochemically driven mechanical energy harvesting, Nat. Commun. 7 (2016), pp. 10146. doi: 10.1038/ncomms10146
  • Y. Wang, Z. Ma, W. Lei, Y. Zou, and C. Lu, Double effect of electrochemical reaction and substrate on hardness in electrodes of lithium-ion batteries, Acta Mech. 227 (2016), pp. 2505–2510. doi: 10.1007/s00707-016-1650-1
  • Z. Xie, Z. Ma, Y. Wang, Y. Zhou, and C. Lu, A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries, RSC Adv. 6 (2016), pp. 22383–22388. doi: 10.1039/C5RA27817A
  • V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, and P.R. Guduru, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation, J. Power Sources 195 (2010), pp. 5062–5066. doi: 10.1016/j.jpowsour.2010.02.013
  • S.P.V. Nadimpalli, V.A. Sethuraman, G. Bucci, V. Srinivasan, A.F. Bower, and P.R. Guduru, On plastic deformation and fracture in Si films during electrochemical lithiation/delithiation cycling, J. Electrochem. Soc. 160 (2013), pp. A1885-A1893. doi: 10.1149/2.098310jes
  • J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science 330 (2010), pp. 1515–1520. doi: 10.1126/science.1195628
  • A. Kushima, J.Y. Huang, and J. Li, Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments, ACS Nano 6 (2012), pp. 9425–9432. doi: 10.1021/nn3037623
  • M.T. McDowell, I. Ryu, S.W. Lee, C. Wang, W.D. Nix, and Y. Cui, Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy, Adv. Mater. 24 (2012), pp. 6034–6041. doi: 10.1002/adma.201202744
  • Y. Wang, Y. Pu, Z. Ma, Y. Pan, and C.Q. Sun, Interfacial adhesion energy of lithium-ion battery electrodes, Extreme Mech. Lett. 9 (2016), pp. 226–236. doi: 10.1016/j.eml.2016.08.002
  • P. Zhang, Z. Ma, Y. Wang, Y. Zou, L. Sun, and C. Lu, Lithiation-induced interfacial failure of electrode-collector: A first-principles study, Mater. Chem. Phys. 222 (2019), pp. 193–199. doi: 10.1016/j.matchemphys.2018.10.018
  • X.H. Liu, J.W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S.A. Dayeh, A.V. Davydov, et al., In situ atomic-scale imaging of electrochemical lithiation in silicon, Nat. Nanotechnol. 7 (2012), pp. 749–756. doi: 10.1038/nnano.2012.170
  • M.T. McDowell, S.W. Lee, W.D. Nix, and Y. Cui, 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater. 25 (2013), pp. 4966–4985. doi: 10.1002/adma.201301795
  • I. Ryu, S.W. Lee, H. Gao, Y. Cui, and W.D. Nix, Microscopic model for fracture of crystalline Si nanopillars during lithiation, J. Power Sources 255 (2014), pp. 274–282. doi: 10.1016/j.jpowsour.2013.12.137
  • X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, and J.Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano 6 (2012), pp. 1522–1531. doi: 10.1021/nn204476h
  • C. Wang, Z. Ma, Y. Wang, and C. Lu, Failure prediction of high-capacity electrode materials in lithium-ion batteries, J. Electrochem. Soc. 163 (2016), pp. A1157–A1163. doi: 10.1149/2.0251607jes
  • H. Wu, Z. Xie, Y. Wang, C. Lu, and Z. Ma, Modeling diffusion–induced stress on two-phase lithiation in lithium-ion batteries, Eur. J. Mech. A-Solid 71 (2018), pp. 320–325. doi: 10.1016/j.euromechsol.2018.04.005
  • P. Zuo, and Y. Zhao, Phase field modeling of lithium diffusion, finite deformation, stress evolution and crack propagation in lithium ion battery, Extreme Mech. Lett. 9 (2016), pp. 467–479. doi: 10.1016/j.eml.2016.03.008
  • K. Zhao, M. Pharr, Q. Wan, W.L. Wang, E. Kaxiras, J.J. Vlassak, and Z. Suo, Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries, J. Electrochem. Soc. 159 (2012), pp. A238–A243. doi: 10.1149/2.020203jes
  • S. Huang, F. Fan, J. Li, S. Zhang, and T. Zhu, Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries, Acta Mater. 61 (2013), pp. 4354–4364. doi: 10.1016/j.actamat.2013.04.007
  • B.V. Ratnakumar, M.C. Smart, L.D. Whitcanack, E.D. Davies, K.B. Chin, F. Deligiannis, and S. Surampudi, Behavior of Li-ion cells in high-intensity radiation environments, J. Electrochem. Soc. 151 (2004), pp. A652-A659. doi: 10.1149/1.1666128
  • B.V. Ratnakumar, M.C. Smart, A. Kindler, H. Frank, R. Ewell, and S. Surampudi, Lithium batteries for aerospace applications: 2003 Mars exploration Rover, J. Power Sources 119–121 (2003), pp. 906–910. doi: 10.1016/S0378-7753(03)00220-9
  • D.S. Lee, Y.H. Choi, H.D. Jeong, Effect of electron beam irradiation on the capacity fading of hydride-terminated silicon nanocrystal based anode materials for lithium ion batteries. J. Ind. Eng. Chem. 53 (2017), pp. 82–92 doi: 10.1016/j.jiec.2017.04.003
  • M.C. Smart, B.V. Ratnakumar, L.D. Whitcanack, K.B. Chin, S. Surampudi, R. Gitzendanner, F. Puglia, and J. Byers, Lithium-ion batteries for aerospace, IEEE Aero. El. Sys. Mag. 19 (2004), pp. 18–25. doi: 10.1109/MAES.2004.1263988
  • C. Tan, D.J. Lyons, K. Pan, K.Y. Leung, W.C. Chuirazzi, M. Canova, A.C. Co, and L.R. Cao, Radiation effects on the electrode and electrolyte of a lithium-ion battery, J. Power Sources 318 (2016), pp. 242–250. doi: 10.1016/j.jpowsour.2016.04.015
  • J. Qiu, D. He, M. Sun, S. Li, C. Wen, J. Hattrick-Simpers, Y.F. Zheng, and L. Cao, Effects of neutron and gamma radiation on lithium-ion batteries, Nucl. Instrum. Meth. B 345 (2015), pp. 27–32. doi: 10.1016/j.nimb.2014.12.058
  • A. Samin, M. Kurth, and L. Cao, Ab initio study of radiation effects on the Li4Ti5O12 electrode used in lithium-ion batteries, AIP Adv. 5 (2015), p. 047110. doi: 10.1063/1.4917308
  • Z. Ma, H. Wu, Y. Wang, Y. Pan, and C. Lu, An electrochemical-irradiated plasticity model for metallic electrodes in lithium-ion batteries, Int. J. Plast. 88 (2017), pp. 188–203. doi: 10.1016/j.ijplas.2016.10.009
  • A. Arsenlis, M. Rhee, G. Hommes, R. Cook, and J. Marian, A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron, Acta Mater. 60 (2012), pp. 3748–3757. doi: 10.1016/j.actamat.2012.03.041
  • N.R. Barton, A. Arsenlis, and J. Marian, A polycrystal plasticity model of strain localization in irradiated iron, J. Mech. Phys. Solids 61 (2013), pp. 341–351. doi: 10.1016/j.jmps.2012.10.009
  • I.J. Beyerlein and C.N. Tomé, A dislocation-based constitutive law for pure Zr including temperature effects, Int. J. Plast. 24 (2008), pp. 867–895. doi: 10.1016/j.ijplas.2007.07.017
  • X. Xiao, D. Song, J. Xue, H. Chu, and H. Duan, A self-consistent plasticity theory for modeling the thermo-mechanical properties of irradiated FCC metallic polycrystals, J. Mech. Phys. Solids 78 (2015), pp. 1–16. doi: 10.1016/j.jmps.2015.01.011
  • X. Xiao, D. Song, J. Xue, H. Chu, and H. Duan, A size-dependent tensorial plasticity model for FCC single crystal with irradiation, Int. J. Plast. 65 (2015), pp. 152–167. doi: 10.1016/j.ijplas.2014.09.004
  • L. Li, H. Wu, and Z. Ma, Neutron radiation on tin anodes of lithium-ion batteries, Radiat. Eff. Defect. S 173 (2018), pp. 1068–1074. doi: 10.1080/10420150.2018.1539730
  • B.N. Singh, A. Horsewell, P. Toft, and D.J. Edwards, Temperature and dose dependencies of microstructure and hardness of neutron irradiated OFHC copper, J. Nucl. Mater. 224 (1995), pp. 131–140. doi: 10.1016/0022-3115(95)00054-2
  • B.N. Singh, A.J.E. Foreman, and H. Trinkaus, Radiation hardening revisited: role of intracascade clustering, J. Nucl. Mater. 249 (1997), pp. 103–115. doi: 10.1016/S0022-3115(97)00231-6
  • B.N. Singh, D.J. Edwards, and P. Toft, Effect of neutron irradiation and post-irradiation annealing on microstructure and mechanical properties of OFHC-copper, J. Nucl. Mater. 299 (2001), pp. 205–218. doi: 10.1016/S0022-3115(01)00698-5
  • Z. Jiao, and G.S. Was, The role of irradiated microstructure in the localized deformation of austenitic stainless steels, J. Nucl. Mater. 407 (2010), pp. 34–43. doi: 10.1016/j.jnucmat.2010.07.006
  • E.H. Lee, T.S. Byun, J.D. Hunn, M.H. Yoo, K. Farrell, and L.K. Mansur, On the origin of deformation microstructures in austenitic stainless steel: part I—microstructures, Acta Mater. 49 (2001), pp. 3269–3276. doi: 10.1016/S1359-6454(01)00193-8
  • E.H. Lee, M.H. Yoo, T.S. Byun, J.D. Hunn, K. Farrell, and L.K. Mansur, On the origin of deformation microstructures in austenitic stainless steel: part II—mechanisms, Acta Mater. 49 (2001), pp. 3277–3287. doi: 10.1016/S1359-6454(01)00194-X
  • M.I. Luppo, C. Bailat, R. Schäublin, and M. Victoria, Tensile properties and microstructure of 590 MeV proton-irradiated pure Fe and a Fe–Cr alloy, J. Nucl. Mater. 283–287 (2000), pp. 483–487. doi: 10.1016/S0022-3115(00)00370-6
  • D. Kiener, P. Hosemann, S.A. Maloy, and A.M. Minor, In situ nano-compression testing of irradiated copper, Nat. Mater. 10 (2011), pp. 608–613. doi: 10.1038/nmat3055
  • M. Briceño, J. Kacher, and I.M. Robertson, Dynamics of dislocation interactions with stacking-fault tetrahedra at high temperature, J. Nucl. Mater. 433 (2013), pp. 390–396. doi: 10.1016/j.jnucmat.2012.10.004
  • G. Cheng and M. Shehadeh, Multiscale dislocation dynamics analyses of laser shock peening in silicon single crystals, Int. J. Plast. 22 (2006), pp. 2171–2194. doi: 10.1016/j.ijplas.2006.03.006
  • B. Skoczeń, and A. Ustrzycka, Kinetics of evolution of radiation induced micro-damage in ductile materials subjected to time-dependent stresses, Int. J. Plast. 80 (2016), pp. 86–110. doi: 10.1016/j.ijplas.2016.01.006
  • A. Singh, N.R. Tao, M. Dao, and S. Suresh, Repeated frictional sliding properties of copper containing nanoscale twins, Scripta Mater. 66 (2012), pp. 849–853. doi: 10.1016/j.scriptamat.2012.02.017
  • Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W.D. Nix, and Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett. 11 (2011), pp. 2949–2954. doi: 10.1021/nl201470j
  • K. Zhao, W.L. Wang, J. Gregoire, M. Pharr, Z. Suo, J.J. Vlassak, and E. Kaxiras, Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study, Nano Lett. 11 (2011), pp. 2962–2967. doi: 10.1021/nl201501s
  • Z.-L. Xu, X. Liu, Y. Luo, L. Zhou, and J.-K. Kim, Nanosilicon anodes for high performance rechargeable batteries, Prog. Mater. Sci. 90 (2017), pp. 1–44. doi: 10.1016/j.pmatsci.2017.07.003
  • C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.-F. Zhang, R.A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol. 3 (2008), pp. 31–35. doi: 10.1038/nnano.2007.411
  • S.W. Lee, N. Yabuuchi, B.M. Gallant, S. Chen, B.-S. Kim, P.T. Hammond, and Y. Shao-Horn, High-power lithium batteries from functionalized carbon-nanotube electrodes, Nat. Nanotechnol. 5 (2010), pp. 531–537. doi: 10.1038/nnano.2010.116
  • Z. Ma, X. Gao, Y. Wang, and C. Lu, Effects of size and concentration on diffusion-induced stress in lithium-ion batteries, J. Appl. Phys. 120 (2016), pp. 025302. doi: 10.1063/1.4958302
  • Z. Guo, L. Ji, L. Chen, Analytical solutions and numerical simulations of diffusion-induced stresses and concentration distributions in porous electrodes with particles of different size and shape. J. Mater. Sci. 52 (2017), pp. 13606–13625 doi: 10.1007/s10853-017-1455-1
  • P. Franciosi, and A. Zaoui, Multislip in f.c.c. crystals a theoretical approach compared with experimental data, Acta Metall. 30 (1982), pp. 1627–1637. doi: 10.1016/0001-6160(82)90184-5
  • K.-S. Cheong, and E.P. Busso, Discrete dislocation density modelling of single phase FCC polycrystal aggregates, Acta Mater. 52 (2004), pp. 5665–5675. doi: 10.1016/j.actamat.2004.08.044
  • S. Krishna, A. Zamiri, and S. De, Dislocation and defect density-based micromechanical modeling of the mechanical behavior of fcc metals under neutron irradiation, Philos. Mag. 90 (2010), pp. 4013–4025. doi: 10.1080/14786435.2010.502150
  • H.-J. Lee, J.-H. Shim, and B.D. Wirth, Molecular dynamics simulation of screw dislocation interaction with stacking fault tetrahedron in face-centered cubic Cu, J. Mater. Res. 22 (2007), pp. 2758–2769. doi: 10.1557/JMR.2007.0345
  • H.-J. Lee, and B. Wirth, Molecular dynamics simulation of the interaction between a mixed dislocation and a stacking fault tetrahedron, Philos. Mag. 89 (2009), pp. 821–841. doi: 10.1080/14786430902776954
  • J.S. Robach, I.M. Robertson, B.D. Wirth, and A. Arsenlis, In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation-defect interactions in ion-irradiated copper, Philos. Mag. 83 (2003), pp. 955–967. doi: 10.1080/0141861031000065329
  • Y.N. Osetsky, D. Rodney, and D.J. Bacon, Atomic-scale study of dislocation–stacking fault tetrahedron interactions. part I: mechanisms, Philos. Mag. 86 (2006), pp. 2295–2313. doi: 10.1080/14786430500513783
  • Z. Ma, Z. Xie, Y. Wang, and C. Lu, Softening by electrochemical reaction-induced dislocations in lithium-ion batteries, Scripta Mater. 127 (2017), pp. 33–36. doi: 10.1016/j.scriptamat.2016.08.032
  • K.J. Kim and Y. Qi, Vacancies in Si can improve the concentration-dependent lithiation rate: molecular dynamics studies of lithiation dynamics of Si electrodes, J. Phys. Chem. C 119 (2015), pp. 24265–24275. doi: 10.1021/acs.jpcc.5b06953
  • A.F. Bower, P.R. Guduru, and V.A. Sethuraman, A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell, J. Mech. Phys. Solids 59 (2011), pp. 804–828. doi: 10.1016/j.jmps.2011.01.003
  • L. Yu, L. Chen, X. Xiao, Q. Chen, and H. Duan, Constitutive relationship of irradiated metallic materials by Eshelby formalism and micro-mechanical scheme, J. Micromech. Mol. Phys. 1 (2016), pp. 1640006. doi: 10.1142/S2424913016400063
  • R.P. Carreker, and W.R. Hibbard, Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size, Acta Metall. 1 (1953), pp. 654-–663. doi: 10.1016/0001-6160(53)90022-4
  • A. Arsenlis §, B.D. Wirth, and M. Rhee, Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu, Philos. Mag. 84 (2004), pp. 3617–3635. doi: 10.1080/14786430412331293531
  • M. Haghi, and L. Anand, A constitutive model for isotropic, porous, elastic-viscoplastic metals, Mech. Mater. 13 (1992), pp. 37–53. doi: 10.1016/0167-6636(92)90034-B
  • T. Bakos, S.N. Rashkeev, and S.T. Pantelides, H2o and O2 molecules in amorphous SiO2: defect formation and annihilation mechanisms, Phys. Rev. B 69 (2004), pp. 195206. doi: 10.1103/PhysRevB.69.195206

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.