652
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Segregation of Mo atoms into stacking faults in CrFeCoNiMo alloy

, & ORCID Icon
Pages 1014-1024 | Received 08 Oct 2018, Accepted 05 Jan 2019, Published online: 23 Jan 2019

References

  • D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017), pp. 448–511. doi: 10.1016/j.actamat.2016.08.081
  • I. Toda-Caraballo and P.E.J. Rivera-Díaz-del-Castillo, Modelling solid solution hardening in high entropy alloys, Acta Mater. 85 (2015), pp. 14–23. doi: 10.1016/j.actamat.2014.11.014
  • Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (2008), pp. 534–538. doi: 10.1002/adem.200700240
  • Z. Wang, Y. Huang, Y. Yang, J. Wang and C.T. Liu, Atomic-size effect and solid solubility of multicomponent alloys, Scr. Mater. 94 (2015), pp. 28–31. doi: 10.1016/j.scriptamat.2014.09.010
  • M. Kuzmina, M. Herbig, D. Ponge, S. Sandlobes and D. Raabe, Linear complexions: Confined chemical and structural states at dislocations, Science 349 (2015), pp. 1080–1083. doi: 10.1126/science.aab2633
  • P. Kontis, Z. Li, D.M. Collins, J. Cormier, D. Raabe and B. Gault, The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys, Scr. Mater. 145 (2018), pp. 76–80. doi: 10.1016/j.scriptamat.2017.10.005
  • J.F. Nie, Y.M. Zhu, J.Z. Liu and X.Y. Fang, Periodic segregation of solute atoms in fully coherent twin boundaries, Science 340 (2013), pp. 957–960. doi: 10.1126/science.1229369
  • J. Hu, Y. Shi, X. Sauvage, G. Sha and K. Lu, Grain boundary stability governs hardening and softening in extremely fine nanograined metals, Science 355 (2017), pp. 1292–1296. doi: 10.1126/science.aal5166
  • Z.R. Zeng, Y.M. Zhu, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis and J.F. Nie, Annealing strengthening in a dilute Mg–Zn–Ca sheet alloy, Scr. Mater. 107 (2015), pp. 127–130. doi: 10.1016/j.scriptamat.2015.06.002
  • P. Lejček, M. Šob and V. Paidar, Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results, Prog. Mater Sci. 87 (2017), pp. 83–139. doi: 10.1016/j.pmatsci.2016.11.001
  • F. Otto, N.L. Hanold and E.P. George, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries, Intermetallics 54 (2014), pp. 39–48. doi: 10.1016/j.intermet.2014.05.014
  • Z. Wu, H. Bei, G.M. Pharr and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014), pp. 428–441. doi: 10.1016/j.actamat.2014.08.026
  • K. Ming, X. Bi and J. Wang, Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates, Int. J. Plast 100 (2018), pp. 177–191. doi: 10.1016/j.ijplas.2017.10.005
  • W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen and C.T. Liu, Ductile CoCrFeNiMo x high entropy alloys strengthened by hard intermetallic phases, Acta Mater. 116 (2016), pp. 332–342. doi: 10.1016/j.actamat.2016.06.063
  • K. Ming, X. Bi and J. Wang, Microstructures and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 alloys, Mater. Charact. 134 (2017), pp. 194–201. doi: 10.1016/j.matchar.2017.10.022
  • A.H. B. Gludovatz, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014), pp. 1153–1158. doi: 10.1126/science.1254581
  • M. Beyramali Kivy and M. Asle Zaeem, Generalized stacking fault energies, ductilities, and twinnabilities of CoCrFeNi-based face-centered cubic high entropy alloys, Scr. Mater. 139 (2017), pp. 83–86. doi: 10.1016/j.scriptamat.2017.06.014
  • S. Zhao, G.M. Stocks and Y. Zhang, Stacking fault energies of face-centered cubic concentrated solid solution alloys, Acta Mater. 134 (2017), pp. 334–345. doi: 10.1016/j.actamat.2017.05.001
  • N.Q. Vo, C.H. Liebscher, M.J.S. Rawlings, M. Asta and D.C. Dunand, Creep properties and microstructure of a precipitation-strengthened ferritic Fe–Al–Ni–Cr alloy, Acta Mater. 71 (2014), pp. 89–99. doi: 10.1016/j.actamat.2014.02.020
  • J.M. Popplewell and J. Crane, Order-strengthening in Cu−Al alloys, Metall. Mater. Trans. 2 (1971), pp. 3411–3420. doi: 10.1007/BF02811623
  • J.M. Vitek and H. Warlimont, The mechanism of anneal hardening in dilute copper alloys, Metall. Trans. A 10 (1979), pp. 1889–1892. doi: 10.1007/BF02811734
  • K. Ming, X. Bi and J. Wang, Precipitation strengthening of ductile Cr 15 Fe 20 Co 35 Ni 20 Mo 10 alloys, Scr. Mater. 137 (2017), pp. 88–93. doi: 10.1016/j.scriptamat.2017.05.019
  • L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.-L. Chiu, J. Li, Z. Zhang, Q. Yu and Z. Shen, Dislocation network in additive manufactured steel breaks strength–ductility trade-off, Mater. Today 21 (2018), pp. 354–361. doi: 10.1016/j.mattod.2017.11.004
  • V. Yamakov, D. Wolf, S. Phillpot and H. Gleiter, Deformation twinning in nanocrystalline Al by molecular-dynamics simulation, Acta Mater. 50 (2002), pp. 5005–5020. doi: 10.1016/S1359-6454(02)00318-X
  • J. Wang and H. Huang, Shockley partial dislocations to twin: Another formation mechanism and generic driving force, Appl. Phys. Lett. 85 (2004), pp. 5983–5985. doi: 10.1063/1.1835549
  • K.W. Urban, Studying atomic structures by aberration-corrected transmission electron microscopy, Science 321 (2008), pp. 506–510. doi: 10.1126/science.1152800

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.