457
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Cross-slip in face centred cubic metals: a general full stress-field dependent activation energy line-tension model

&
Pages 1460-1480 | Received 07 Aug 2018, Accepted 05 Feb 2019, Published online: 19 Mar 2019

References

  • D. Hull and D.J. Bacon, Chapter 3 – Movement of dislocations, in Introduction to Dislocations, 4th ed., Elsiver, Oxford, 2001, pp. 42–61.
  • P.J. Jackson, Dislocation modelling of shear in f.c.c. crystals. Prog. Mater. Sci. 29 (1985), pp. 139–175. doi: 10.1016/0079-6425(85)90009-X
  • E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Thermostatistical modelling of hot deformation in FCC metals. Int. J. Plast. 47 (2013), pp. 202–221. doi: 10.1016/j.ijplas.2013.02.002
  • S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, 1998.
  • D. Tramontin, P. Erhart, T. Germann J. Hawreliak, A. Higginbotham, N. Park, R. Ravelo, A. Stukowski, M. Suggit, Y. Tang, et al., Molecular dynamics simulations of shock-induced plasticity in tantalum. High Energy Density Phys. 10 (2014), pp. 9–15. doi: 10.1016/j.hedp.2013.10.007
  • Y. Tang and J.A. El-Awady, Formation and slip of pyramidal dislocations in hexagonal close-packed magnesium single crystals. Acta Mater. 71 (2014), pp. 319–332. doi: 10.1016/j.actamat.2014.03.022
  • M.S. Duesbery, N.P. Louat, and K. Sadananda, The mechanics and energetics of cross-slip. Acta Metall. Mater. 40(1) (1992), pp. 149–158. doi: 10.1016/0956-7151(92)90208-V
  • P.J. Jackson, The role of cross-slip in the plastic deformation of crystals. Mater. Sci. Eng. 57(1) (1983), pp. 39–47. doi: 10.1016/0025-5416(83)90025-3
  • G. Saada, Cross-slip and work hardening of f.c.c. crystals. Mater. Sci. Eng. A. 137 (1991), pp. 177–183. doi: 10.1016/0921-5093(91)90333-I
  • W. Püschl, Models for dislocation cross-slip in close-packed crystal structures: A critical review. Prog. Mater. Sci. 47(4) (2002), pp. 415–461. doi: 10.1016/S0079-6425(01)00003-2
  • R.L. Fleischer, Cross slip of extended dislocations. Acta Metall. 7(2) (1959), pp. 134–135. doi: 10.1016/0001-6160(59)90122-1
  • J.C. Fisher, Dislocations and mechanical properties of crystals, An International Conference Held at Lake Placid, 1957.
  • S. Xu, L. Xiong, Y. Chen and D.L. McDowell, Shear stress- and line length-dependent screw dislocation cross-slip in FCC Ni. Acta Mater. 122 (2017), pp. 412–419. doi: 10.1016/j.actamat.2016.10.005
  • L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis and Y. Bréchet, Dislocation Microstructures and Plastic Flow: A 3D simulation. Solid State Phenom. 23–24 (1992), pp. 455–472. doi: 10.4028/www.scientific.net/SSP.23-24.455
  • C. Déprés, C.F. Robertson, and M.C. Fivel, Low-strain fatigue in 316L steel surface grains: A three dimension discrete dislocation dynamics modelling of the early cycles. Part 2: Persistent slip markings and micro-crack nucleation. Philos. Mag. 86(1) (2006), pp. 79–97. doi: 10.1080/14786430500341250
  • A.M. Hussein, S.I. Rao, M.D. Uchic, D.M. Dimiduk, and J.A. El-Awady, Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals. Acta Mater. 85 (2015), pp. 180–190. doi: 10.1016/j.actamat.2014.10.067
  • T. Rasmussen, T. Leffers, O.B. Pedersen, K.W. Jacobsen, B. Pedersen, and K.W. Jacobsens, Simulation of structure and annihilation of screw dislocation dipoles. Philos. Mag. A. 80(5) (2000), pp. 1273–1290. doi: 10.1080/01418610008212115
  • S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, M.D. Uchic, and C. Woodward, Atomistic simulations of intersection cross-slip nucleation in L12 Ni3Al. Scr. Mater. 66(6) (2012), pp. 410–413. doi: 10.1016/j.scriptamat.2011.12.002
  • T. Vegge, Atomistic simulations of screw dislocation cross slip in copper and nickel. Mater. Sci. Eng. A. 309–310 (2001), pp. 113–116. doi: 10.1016/S0921-5093(00)01624-5
  • D. Mordehai, I. Kelson, and G. Makov, Cross-slip and annihilation of screw dislocations in Cu: a molecular dynamics study. Mater. Sci. Eng. A. 400 (2005), pp. 37–39. doi: 10.1016/j.msea.2005.03.077
  • D. Mordehai, Relation Between Microscopic Properties and Macroscopic Dynamic Properties of Metals, Tel Aviv University, Tel-Aviv, 2005.
  • E. Oren, E. Yahel and G. Makov, Kinetics of dislocation cross-slip: A molecular dynamics study. Comput. Mater. Sci. 138 (2017), pp. 246–254. doi: 10.1016/j.commatsci.2017.06.039
  • K. Kang, J. Yin and W. Cai, Stress dependence of cross slip energy barrier for face-centered cubic nickel. J. Mech. Phys. Solids. 62(1) (2014), pp. 181–193. doi: 10.1016/j.jmps.2013.09.023
  • A.N. Stroh, Constrictions and Jogs in extended dislocations. Proc. Phys. Soc. Sect. B. 67(5) (1954), pp. 427. doi: 10.1088/0370-1301/67/5/307
  • B. Escaig, Dislocation Dynamics, McGraw-Hill, New York, 1968. McGraw-Hill Series in Materials-Science and Engineering.
  • A. Malka-Markovitz and D. Mordehai, Cross-slip in face-centered cubic metals: a general Escaig stress-dependent activation energy line tension model. Philos. Mag. 98(5) (2018), pp. 347–370. doi: 10.1080/14786435.2017.1406194
  • S.I. Rao, D.M. Dimiduk, J.A. El-Awady, T.A. Parthasarathy, M.D. Uchic and C. Woodward, Activated states for cross-slip at screw dislocation intersections in face-centered cubic nickel and copper via atomistic simulation. Acta Mater. 58(17) (2010), pp. 5547–5557. doi: 10.1016/j.actamat.2010.06.005
  • S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, J. El-Awady, C. Woodward and M.D. Uchic, Calculations of intersection cross-slip activation energies in fcc metals using nudged elastic band method. Acta Mater. 59(19) (2011), pp. 7135–7144. doi: 10.1016/j.actamat.2011.08.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.