69
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Thermo-kinetic behaviour of Ge20Te75I5 glass for infrared optics

&
Pages 1602-1618 | Received 11 Sep 2018, Accepted 19 Feb 2019, Published online: 19 Mar 2019

References

  • S. Hocdé, C. Boussard-Plédel, G. Fonteneau and J. Lucas, Chalcogens based glasses for IR fiber chemical sensors. Solid State Sci. 3 (2001), pp. 279–284. doi: 10.1016/S1293-2558(00)01135-3
  • S. Maurugeon, B. Bureau, C. Boussard-Plédel, A.J. Faber, X.H. Zhang, W. Geliesen and J. Lucas, Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 μm. J. Non-Cryst. Sol. 355 (2009), pp. 2074–2078. doi: 10.1016/j.jnoncrysol.2009.01.059
  • P. Lucas, G.J. Coleman, S.B. Jiang, T. Luo and Z.Y. Yang, Chalcogenide glass fibers: optical window tailoring and suitability for bio-chemical sensing. Opt. Mater. 47 (2015), pp. 530–536. doi: 10.1016/j.optmat.2015.06.034
  • Allison A. Wilhelm, Catherine Boussard-Pledel, Pierre Lucas, “New tellurium based glasses for use in bio-sensing applications,” Proc. SPIE 6433, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications VII, 64330U (15 February 2007); doi: 10.1117/12.724269
  • P. Houizot, C. Boussard-Plédel, A.J. Faber, L.K. Cheng, B. Bureau, P.A.V. Nijnatten, W.L.M. Gielesen, J.P.d. Carmo and J. Lucas, Infrared single mode chalcogenide glass fiber for space. Opt. Express 15 (2007), pp. 12529–12538. doi: 10.1364/OE.15.012529
  • A. Leger, Strategies for remote detection of life–DARWIN-IRSI and TPF missions. Adv. Space Res. 25 (2000), pp. 2209–2223. doi: 10.1016/S0273-1177(99)01157-6
  • S. Cui, R. Chahal, C. Boussard-Plédel, V. Nazabal, J.-L. Doualan, J. Troles, J. Lucas and B. Bureau, From selenium- to tellurium-based glass optical Fibers for infrared Spectroscopies. Molecules 18 (2013), pp. 5373–5388. doi: 10.3390/molecules18055373
  • C. Conseil, V.S. Shiryaev, S. Cui, C. Boussard-Pledel, J. Troles, A.P. Velmuzhov, A.M. Potapov, A.I. Suchkov, M.F. Churbanov and B. Bureau, Preparation of high Purity Te-rich Ge-Te-Se Fibers for 5–15 μm infrared range. J. Lightwave Technol. 31 (2013), pp. 1703–1707. doi: 10.1109/JLT.2013.2257163
  • C. Jiang, C. Cheng, Q.D. Zhu, X.S. Wang, Q.H. Nie, S.X. Dai, G.M. Tao, M.M. Zhu, F.X. Liao, P.Q. Zhang, X. Shen, T.F. Xu, P.Q. Zhang, Z.J. Liu and X.H. Zhang, Fabrication and characterization of Ge-Sb-Se-I glasses and fibers. Appl. Phys. a-Mater. 120 (2015), pp. 127–135. doi: 10.1007/s00339-015-9179-z
  • G. Wang, Q. Nie, X. Wang, S. Dai, T. Xu, X. Shen and X.-H. Zhang, Composition dependence of optical band gap of the Se–Ge–Te far infrared transmitting glasses. Phys. B Condens. Matt. 405 (2010), pp. 4424–4428. doi: 10.1016/j.physb.2010.08.007
  • G.X. Wang, Q.H. Nie, M. Barj, X.S. Wang, S.X. Dai, X.A. Shen, T.F. Xu and X.H. Zhang, Compositional dependence of the optical properties of novel Ge-Ga-Te-CsI far infrared transmitting chalcohalide glasses system. J. Phys. Chem. Sol 72 (2011), pp. 5–9. doi: 10.1016/j.jpcs.2010.10.018
  • P. Petkov, V. Ilcheva, D. Wamwangi, M. Wuttig, P. Ilchev and T. Petkova, Phase transition of gallium containing telluride thin films. J. Optoelectron. Adv. M 11 (2009), pp. 1261–1264.
  • R. Svoboda, D. Brandová and J. Málek, Thermal behavior of Ge20SeyTe80−y infrared glasses (for y up to 8 at.%). J. Alloys Compd 680 (2016), pp. 427–435. doi: 10.1016/j.jallcom.2016.04.165
  • R. Svoboda, D. Stříteský, Z. Zmrhalová, D. Brandová and J. Málek, Correlation of structural, thermo-kinetic and thermo-mechanical properties of the Ge11Ga11Te78 glass. J. Non-Cryst. Sol. 445–446 (2016), pp. 7–14. doi: 10.1016/j.jnoncrysol.2016.04.045
  • R. Svoboda, D. Brandová and J. Málek, Combined dilatometric and calorimetric study of kinetic processes occurring in Ge20Te76Se4 infrared bulk glass. J. Non-Cryst. Sol. 432 (2016), pp. 493–498. doi: 10.1016/j.jnoncrysol.2015.11.015
  • S. Danto, P. Houizot, C. Boussard-Pledel, X.H. Zhang, F. Smektala and J. Lucas, A family of far-infrared-transmitting glasses in the Ga–Ge–Te system for space applications. Adv. Funct. Mater. 16 (2006), pp. 1847–1852. doi: 10.1002/adfm.200500645
  • J. Sun, Q. Nie, X. Wang, S. Dai, X. Zhang, B. Bureau, C. Boussard, C. Conseil and H. Ma, Structural investigation of Te-based chalcogenide glasses using Raman spectroscopy. Infrared Phys. Technol. 55 (2012), pp. 316–319. doi: 10.1016/j.infrared.2012.03.003
  • A.Q. Tool, Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29 (1946), pp. 240–253. doi: 10.1111/j.1151-2916.1946.tb11592.x
  • O.S. Narayanaswamy, A model of structural relaxation in glass. J. Am. Ceram. Soc. 54(1971), pp. 491-498. doi: 10.1111/j.1151-2916.1971.tb12186.x
  • C.T. Moynihan, A.J. Easteal, M.A. Bolt and J. Tucker, Dependence of the fictive temperature of glass on cooling rate. J. Am. Ceram. Soc. 59 (1976), pp. 12–16. doi: 10.1111/j.1151-2916.1976.tb09376.x
  • R. Svoboda and J. Málek, Description of enthalpy relaxation dynamics in terms of TNM model. J. Non-Cryst. Sol. 378 (2013), pp. 186–195. doi: 10.1016/j.jnoncrysol.2013.07.008
  • J. Málek and J. Klikorka, Crystallization kinetics of glassy GeS2. J. Therm. Anal. 32 (1987), pp. 1883–1893. doi: 10.1007/BF01913981
  • D. Brandová, R. Svoboda and J. Málek, Influence of particle size on crystallization and relaxation behavior of Ge20Se4Te76 glass for infrared optics. J. Non-Cryst. Sol. 433 (2016), pp. 75–81. doi: 10.1016/j.jnoncrysol.2015.11.024
  • R. Svoboda, D. Brandová and J. Málek, Non-isothermal crystallization kinetics of GeTe4 infrared glass. J. Therm. Anal. Calorim. 123 (2016), pp. 195–204. doi: 10.1007/s10973-015-4937-x
  • E.M. Vinod, A.K. Singh, R. Ganesan and K.S. Sangunni, Effect of selenium addition on the GeTe phase change memory alloys. J. Alloy Compd. 537 (2012), pp. 127–132. doi: 10.1016/j.jallcom.2012.05.064
  • G.S. Varma, M.S.R.N. Kiran, D.V.S. Muthu, U. Ramamurty, A.K. Sood and S. Asokan, Thermally reversing window in Ge15Te85−xInx glasses: Nanoindentation and micro-Raman studies. J. Non-Cryst. Sol. 358 (2012), pp. 3103–3108. doi: 10.1016/j.jnoncrysol.2012.08.013
  • R. De Bastiani, E. Carria, S. Gibilisco, M.G. Grimaldi, A.R. Pennisi, A. Gotti, A. Pirovano, R. Bez and E. Rimini, Ion-irradiation-induced selective bond rearrangements in amorphous GeTe thin films. Phys. Rev. B 80 (2009), pp. 245205. doi: 10.1103/PhysRevB.80.245205
  • K.S. Andrikopoulos, S.N. Yannopoulos, G.A. Voyiatzis, A.V. Kolobov, M. Ribes and J. Tominaga, Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition. J. Phys. Cond. Matt. 18 (2006), pp. 965. doi: 10.1088/0953-8984/18/3/014
  • A.S. Pine and G. Dresselhaus, Raman spectra and lattice dynamics of tellurium. Phys. Rev. B 4 (1971), pp. 356–371. doi: 10.1103/PhysRevB.4.356
  • O. Uemura, N. Hayasaka, S. Tokairin and T. Usuki, Local atomic arrangement in Ge-Te and Ge-S-Te glasses. J. Non-Cryst. Sol. 205-207 (1996), pp. 189–193. doi: 10.1016/S0022-3093(96)00376-6
  • M. Upadhyay, S. Murugavel, M. Anbarasu and T.R. Ravindran, Structural study on amorphous and crystalline state of phase change material. J. Appl. Phys. 110 (2011), pp. 083711–083716. doi: 10.1063/1.3653265
  • M.H. Brodsky, R.J. Gambino, J.E. Smith and Y. Yacoby, The Raman spectrum of amorphous tellurium. Phys. St. Sol. B 52 (1972), pp. 609–614. doi: 10.1002/pssb.2220520229
  • E.M. Vinod and K.S. Sangunni, The effect of Se doping on spectroscopic and electrical properties of GeTe. Thin Solid Films 550 (2014), pp. 569–574. doi: 10.1016/j.tsf.2013.11.038
  • A.V. Kolobov, P. Fons, J. Tominaga, A.L. Ankudinov, S.N. Yannopoulos and K.S. Andrikopoulos, Crystallization-induced short-range order changes in amorphous GeTe. J. Phys. Cond. Matt. 16 (2004), pp. 5103. doi: 10.1088/0953-8984/16/44/008
  • R. Svoboda and J. Malek, Enthalpy relaxation kinetics of GeTe4 glass. J. Non-Cryst. Sol. 422 (2015), pp. 51–56. doi: 10.1016/j.jnoncrysol.2015.05.016
  • P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu and D.A. Zajac, Structure of Te-rich Te-Ge-X (X = I, Se, Ga) glasses. J. Phys. Condens. Matt. 22 (2010), pp. 404207. doi: 10.1088/0953-8984/22/40/404207
  • R. Svoboda, Novel equation to determine activation energy of enthalpy relaxation. J. Therm. Anal. Calorim 121 (2015), pp. 895–899. doi: 10.1007/s10973-015-4619-8
  • A. Perejón, P.E. Sánchez-Jiménez, J.M. Criado and L.A. Pérez-Maqueda, Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J. Phys. Chem. B 115 (2011), pp. 1780–1791. doi: 10.1021/jp110895z
  • R. Svoboda and J. Málek, Crystallization mechanisms occurring in the Se-Te glassy system. J. Therm. Anal. Calorim. 119 (2015), pp. 155–166. doi: 10.1007/s10973-014-4199-z
  • H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29 (1957), pp. 1702–1706. doi: 10.1021/ac60131a045
  • M.J. Starink, The determination of activation energy from linear heating rate experiments: a Comparison of the accuracy of isoconversion methods. Thermochim. Acta 404 (2003), pp. 163–176. doi: 10.1016/S0040-6031(03)00144-8
  • J. Málek, J. Chovanec, R. Svoboda, Y. Taniguchi and H. Kawaji, Heat capacity of vitreous GeS2. J. Chem. Therm. 81 (2015), pp. 101–108. doi: 10.1016/j.jct.2014.09.021
  • J. Šesták, Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis, Elsevier, Amsterdam, 1984.
  • G. Wang, C. Li, Q. Nie, Z. Pan, M. Li, Y. Xu, H. Wang and D. Shi, Thermal stability and far infrared transmitting property of GeTe4-AsTe3-AgI glasses and glass-ceramics. J. Non-Cryst. Sol. 463 (2017), pp. 80–84. doi: 10.1016/j.jnoncrysol.2017.03.001
  • A. Hrubý, Evaluation of glass-forming tendency by means of DTA. Czechoslovak J Phys. B 22 (1972), pp. 1187–1193. doi: 10.1007/BF01690134
  • M.L.F. Nascimento and N.O. Dantas, Assessment of glass-forming ability and the effect of La2O3 on crystallization mechanism of barium-lead-zinc phosphate glasses. Mater. Lett. 61 (2007), pp. 912–916. doi: 10.1016/j.matlet.2006.06.012
  • R. Svoboda, D. Brandová, M. Chromčíková, Thermokinetic behavior of Ga-doped GeTe4 glasses, J. Non-Cryst. Sol. (submitted).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.