203
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Optical spectroscopy study of modifications induced in cerium dioxide by electron and ion irradiations

, , , , , , & ORCID Icon show all
Pages 1695-1714 | Received 13 Sep 2018, Accepted 27 Feb 2019, Published online: 05 Apr 2019

References

  • J.-M. Costantini, F. Beuneu, and W.J. Weber, Radiation damage in cubic-stabilized zirconia and ceria, in Properties of Fluorite Structure Materials, P. Vajda and J.M. Costantini, eds., Nova Science Publishers, New York, 2013. pp. 127–152.
  • K. Ohhara, N. Ishikawa, S. Sakai, Y. Matsumoto, O. Michikami, and Y. Ohta, Oxygen defects created in CeO2 irradiated with 200 MeV Au ions, Nucl. Instr. Meth. B 267 (2009), pp. 973–975. doi: 10.1016/j.nimb.2009.02.034
  • J.-M. Costantini, S. Miro, G. Gutierrez, K. Yasuda, S. Takaki, N. Ishikawa, and M. Toulemonde, Raman spectroscopy study of damage induced in cerium dioxide by swift heavy ion irradiations, J. Appl. Phys. 122 (2017), pp. 205901-1–/205901-9. doi: 10.1063/1.5011165
  • J.T. Graham, Y. Zhang, and W.J. Weber, Irradiation-induced defect formation and damage accumulation in single crystal CeO2, J. Nucl. Mater. 498 (2018), pp. 400–408. doi: 10.1016/j.jnucmat.2017.09.046
  • H. Matzke, Radiation damage in nuclear fuel materials: the “rim” effect in UO2 and damage in inert matrices for transmutation of actinides, Nucl. Instr. Meth. B 116 (1996), pp. 121–125. doi: 10.1016/0168-583X(96)00021-3
  • H. Ohno, A. Iwase, D. Matsumura, Y. Nishihata, J. Mizuki, N. Ishikawa, Y. Baba, N. Hirao, T. Sonoda, and M. Kinoshita, Study on effects of swift heavy ion irradiation in cerium dioxide using synchrotron radiation X-ray absorption spectroscopy, Nucl. Instr. Meth. B 266 (2008), pp. 3013–3017. doi: 10.1016/j.nimb.2008.03.155
  • A. Iwase, H. Ohno, N. Ishikawa, Y. Baba, N. Hirao, T. Sonoda, and M. Kinoshita, Study on the behavior of oxygen atoms in swift heavy ion irradiated CeO2 by means of synchrotron radiation X-ray absorption spectroscopy, Nucl. Instr. Meth. B 267 (2009), pp. 969–972. doi: 10.1016/j.nimb.2009.02.035
  • K. Shimizu, S. Kosugi, Y. Tahara, K. Yasunaga, Y. Kaneta, N. Ishikawa, F. Hori, T. Matsui, and A. Iwase. Change in magnetic properties induced by swift heavy ion irradiation in CeO2, Nucl. Instr. Meth. B 286 (2012), pp. 291–294. doi: 10.1016/j.nimb.2012.01.008
  • J.-M. Costantini, G. Lelong, M. Guillaumet, W.J. Weber, S. Takaki, and K. Yasuda, Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria, J. Phys. Condens. Matter 28 (2016), pp. 325901-1–325901-9. doi: 10.1088/0953-8984/28/32/325901
  • J.-M. Costantini, L. Binet, N. Touati, G. Lelong, M. Guillaumet, and W.J. Weber, Defects induced in cerium dioxide single crystals by electron irradiation, J. Appl. Phys. 123 (2018), pp. 025901-1–025901-7. doi: 10.1063/1.5007823
  • N. Ishikawa, Y. Chimi, O. Michikami, Y. Ohta, K. Ohhara, M. Lang, and R. Neumann, Study of structural change in CeO2 irradiated with high-energy ions by means of X-ray diffraction, Nucl. Instr. Meth. B 266 (2008), pp. 3033–3036. doi: 10.1016/j.nimb.2008.03.159
  • N. Ishikawa and K. Takegahara, Radiation damages in CeO2 thin films irradiated with ions having the same nuclear stopping power and different electronic stopping powers, Nucl. Instr. Meth. B 272 (2012), pp. 227–230. doi: 10.1016/j.nimb.2011.01.071
  • A. Kumar, R. Devanathan, V. Shutthanandan, S.V.N.T. Kuchibhatla, A.S. Karakoti, Y. Yong, S. Thevuthasan, and S. Seal, Radiation-induced reduction of ceria in single and polycrystalline thin films, J. Phys. Chem. C 116 (2012), pp. 361–366. doi: 10.1021/jp209345w
  • T. Kishino, K. Shimizu, Y. Saitoh, N. Ishikawa, F. Hori, and A. Iwase, Effects of high-energy ion irradiation on the crystal structure in CeO2 thin films, Nucl. Instr. Meth., B 314 (2013), pp. 191–194. doi: 10.1016/j.nimb.2013.04.028
  • K. Yasuda, M. Etoh, K. Sawada, T. Yamamoto, K. Yasunaga, S. Matsumura, and N. Ishikawa, Defect formation and accumulation in CeO2 irradiated with swift heavy ions, Nucl. Instr. Meth. 314 (2013), pp. 185–190. doi: 10.1016/j.nimb.2013.04.069
  • C.A. Yablinsky, R. Devanathan, J. Pakarinen, J. Gan, D. Severin, C. Trautmann, and T.R. Allen, Characterization of swift heavy ion irradiation in ceria, J. Mater. Res. 30 (2015), pp. 1473–1484. doi: 10.1557/jmr.2015.43
  • S. Takaki, K. Yasuda, T. Yamamoto, S. Matsumura, and N. Ishikawa, Structure of ion tracks in ceria irradiated with high energy xenon ions, Prog. Nucl. Energy 92 (2016), pp. 306–312. doi: 10.1016/j.pnucene.2016.07.013
  • R.I. Palomares, J. Shamblin, C.L. Tracy, J. Neuefeind, R.C. Ewing, C. Trautmann, and M. Lang, Defect accumulation in swift heavy ion irradiated CeO2 and ThO2, J. Mater. Chem. A 5 (2017), pp. 12193–12201. doi: 10.1039/C7TA02640D
  • G. Hass, J.B. Ramsey, and R. Thun, Optical properties and structure of cerium dioxide films, J. Opt. Soc. Am. 48 (1958), pp. 324–327. doi: 10.1364/JOSA.48.000324
  • T.S. Oh, Y.S. Tokpanov, Y. Hao, W. Jung, and S.M. Haile, Determination of optical and microstructural parameters of ceria films, J. Appl. Phys. 112 (2012), pp. 103535-1–103535-3. doi: 10.1063/1.4766928
  • J.I. Pankove, Optical Processes in Semiconductors, Dover, New York, 1975.
  • A.S. Barker and M. Tinkham, Far-infrared ferroelectric vibration mode in SrTiO3, Phys. Rev. 125 (1962), pp. 1527–1530. doi: 10.1103/PhysRev.125.1527
  • K. Kamaras, K.L. Barth, F. Keilmann, R. Henn, M. Reedyk, C. Thomsen, M. Cardona, J.K. Kircher, P.L. Richards, and J.L. Stehlé, The low-temperature infrared optical functions of SrTiO3 determined by reflectance spectroscopy and spectroscopic ellipsometry, J. Appl. Phys. 78 (1995), pp. 1235–1240. doi: 10.1063/1.360364
  • S. Guo, H. Atwin, S.N. Jacobsen, K. Jearendahl, and U. Helmersson, A spectroscopic ellipsometry study of cerium dioxide thin films grown on sapphire by rf magnetron sputtering, J. Appl. Phys. 77 (1995), pp. 5369–5376. doi: 10.1063/1.359225
  • Stopping Powers for Electrons and Positrons, International Commission on Radiation Units and Measurements, ICRU Report 37 (1984). Available at http://physics.nist.gov/PhysRefData/contents-radi.html.
  • J.P. Biersack and L.G. Haggmark, A Monte-Carlo computer program for the transport of energetic ions in amorphous targets, Nucl. Instr. Meth. 174 (1980), pp. 257–269. Available at www.srim.org. doi: 10.1016/0029-554X(80)90440-1
  • S.J. Zinkle and C. Kinoshita, Defect production in ceramics, J. Nucl. Mater. 251 (1997), pp. 200–217. doi: 10.1016/S0022-3115(97)00224-9
  • B.S. Thomas, N.A. Marks, and B.D. Begg, Defects and threshold displacement energies in SrTiO3 perovskite using atomistic computer simulations, Nucl. Instr. Meth. 254 (2007), pp. 211–218. doi: 10.1016/j.nimb.2006.11.069
  • J.M. Costantini and F. Beuneu, Threshold displacement energy in yttria-stabilized zirconia, Phys. Stat. Sol. (c) 4 (2007), pp. 1258–1263. doi: 10.1002/pssc.200673752
  • C.H. Perry, J.H. Fertel, and T.F. McNeilly, Temperature dependence of the Raman spectrum of SrTiO3 and KTaO3, J. Chem. Phys. 47 (1967), pp. 1619–1625. doi: 10.1063/1.1712142
  • A.A. Sirenko, I.A. Akimov, J.R. Fox, A.M. Clark, H.C. Li, W. Si, and X.X. Xi, Observation of the first-order Raman scattering in SrTiO3 thin films, Phys. Rev. Lett. 82 (1999), pp. 4500–4503. doi: 10.1103/PhysRevLett.82.4500
  • K. van Benthem, C. Elsässer, and R.H. French, Bulk electronic structure of SrTiO3: experiment and theory, J. Appl. Phys. 90 (2001), pp. 6156–6164. doi: 10.1063/1.1415766
  • J.-M. Costantini, S. Miro, G. Lelong, M. Guillaumet, and M. Toulemonde, Damage induced in garnets by heavy ion irradiations: a study by optical spectroscopies, Philos. Mag. 98 (2017), pp. 312–328. doi: 10.1080/14786435.2017.1403659
  • R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon, J. Phys. E Sci. Instrum. 16 (1983), pp. 1214–1222. doi: 10.1088/0022-3735/16/12/023
  • E. Marquez, J. Ramirez-Malot, P. Villarest, R. Jiménez-Garay, P.J.S. Ewen, and A.E. Owen, Calculation of the thickness and optical constants of amorphous arsenic sulphide films from their transmission spectra, J. Phys. D Appl. Phys. 25 (1992), pp. 535–541. doi: 10.1088/0022-3727/25/3/031
  • M. Caglar, Y. Caglar, and S. Ilican, The determination of the thickness and optical constants of the ZnO crystalline thin film by using envelope method, J. Optoelec. Adv. Mate. 8 (2006), pp. 1410–1413.
  • M.J. Dodge, Refractive index, in Handbook of Laser Science and Technology, Volume IV, Optical Material: Part 2, M.J. Weber, ed., CRC Press, Boca Raton, 1986 ( as cited in Handbook of Optics, 3rd edition, Vol. 4. McGraw-Hill, 2009).
  • D.T.Y. Wei, W.W. Lee, and R.L. Bloom, Large refractive index change induced by ion implantation in lithium niobate, Appl. Phys. Lett. 25 (1974), pp. 329–331. doi: 10.1063/1.1655494
  • G. Götz, Optoelectronics materials, in Ion Beam Modification of Insulators, P. Mazzoldi and G.W. Arnold, eds., Elsevier, Amsterdam, 1987. pp. 412–448.
  • P.D. Townsend, An overview of ion-implanted optical waveguide profiles, Nucl. Instr. Meth. B 46 (1990), pp. 18–25. doi: 10.1016/0168-583X(90)90663-F
  • K. Seeger, Semiconductor Physics: An Introduction, Springer Series in Solid-State Sciences, vol. 40, Springer, Berlin, 1991.
  • J.M. Costantini and F. Beuneu, Point defects induced in yttria-stabilized zirconia by electron and swift heavy ion irradiations, J. Phys. Condens. Matter 23 (2011), pp. 115902-1–115902-9.
  • S. Lagomarsino, P. Olivero, S. Calusi, D. Gatto Monticone, L. Giuntini, M. Massi, S. Sciortino, A. Sytchkova, A. Sordini, and M. Vannoni, Complex refractive index variation in proton-damaged diamond, Opt. Express 20 (2012), pp. 19382–19394. doi: 10.1364/OE.20.019382
  • R.L. Hines, Radiation damage in diamond by 20-keV carbon ions, Phys. Rev 138 (1965), pp. A1747–A1751. doi: 10.1103/PhysRev.138.A1747
  • H. Hayashi, M. Kanoh, C.J. Quan, H. Inaba, S. Wang, M. Dokiya, and H. Tagawa, Thermal expansion of Gd-doped ceria and reduced ceria, Solid State Ionics 132 (2000), pp. 227–233. doi: 10.1016/S0167-2738(00)00646-9
  • R.C. Alig and S. Bloom, Electron-hole-pair creation energies in semiconductors, Phys. Rev. Lett. 35 (1975), pp. 1522–1525. doi: 10.1103/PhysRevLett.35.1522
  • Y. Zhang, D.S. Aidhy, T. Varga, S. Moll, P.D. Edmondson, F. Namavar, K. Jin, C.N. Ostrouchov, and W.J. Weber, The effect of electronic energy loss on irradiation-induced grain growth in nanocrystalline oxides, Phys. Chem. Chem. Phys. 16 (2014), pp. 8051–8059. doi: 10.1039/C4CP00392F

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.