537
Views
27
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Atomic structure of γ″ phase in Mg–Gd–Y–Ag alloy induced by Ag addition

, , , , , & show all
Pages 1957-1969 | Received 27 Aug 2018, Accepted 02 Apr 2019, Published online: 14 Apr 2019

References

  • B.L. Mordike and T. Ebert, Magnesium properties-applications-potential. Mater. Sci. Eng. A 302 (2001), pp. 37–45. doi: 10.1016/S0921-5093(00)01351-4
  • I.J. Polmear, Magnesium alloys and applications. Mater. Sci. Technol. 10 (1994), pp. 1–16. doi: 10.1179/mst.1994.10.1.1
  • J.F. Nie, X. Gao, and S.M. Zhu, Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn. Scr. Mater. 53 (2005), pp. 1049–1053. doi: 10.1016/j.scriptamat.2005.07.004
  • J.D. Robson, N. Stanford, and M.R. Barnett, Effect of precipitate shape on slip and twinning in magnesium alloys. Acta Mater. 59 (2011), pp. 1945–1956. doi: 10.1016/j.actamat.2010.11.060
  • W. Guo, Q.D. Wang, B. Ye, M.P. Liu, T. Peng, X.T. Liu, and H. Zhou, Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting. Mater. Sci. Eng. A 540 (2012), pp. 115–122. doi: 10.1016/j.msea.2012.01.111
  • H. Zhou, Q.D. Wang, B. Ye, and W. Guo, Hot deformation and processing maps of as-extruded Mg-9.8Gd-2.7Y-0.4Zr Mg alloy. Mater. Sci. Eng. A 576 (2013), pp. 101–107. doi: 10.1016/j.msea.2013.03.090
  • L. Zhang, B. Ye, W.J. Liao, H. Zhou, W. Guo, Q.D. Wang, H.Y. Jiang, and W.J. Ding, Microstructure evolution and mechanical properties of AZ91D magnesium alloy processed by repetitive upsetting. Mater. Sci. Eng. A 641 (2015), pp. 62–70. doi: 10.1016/j.msea.2015.06.040
  • J.X. Zheng, Z. Li, L.D. Tan, X.S. Xu, R.C. Luo, and B. Chen, Precipitation in Mg-Gd-Y-Zr alloy: atomic-scale insights into structures and transformations. Mater. Charact. 117 (2016), pp. 76–83. doi: 10.1016/j.matchar.2016.04.015
  • W. Rong, Y. Zhang, Y.J. Wu, Y.L. Chen, T. Tang, L.M. Peng, and D.Y. Li, Fabrication of high-strength Mg-Gd-Zn-Zr alloys via differential-thermal extrusion. Mater. Charact. 131 (2017), pp. 380–387. doi: 10.1016/j.matchar.2017.07.031
  • Y.M. Zhu, M.Z. Bian, and J.F. Nie, Tilt boundaries and associated solute segregation in a Mg-Gd alloy. Acta Mater. 127 (2017), pp. 505–518. doi: 10.1016/j.actamat.2016.12.032
  • W.T. Sun, X.G. Qiao, M.Y. Zheng, C. Xu, S. Kamado, X.J. Zhao, H.W. Chen, N. Gao, and M.J. Starink, Altered ageing behaviour of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high pressure torsion. Acta Mater. 151 (2018), pp. 260–270. doi: 10.1016/j.actamat.2018.04.003
  • R.G. Li, J.F. Nie, G.J. Huang, Y.C. Xin, and Q. Liu, Development of high-strength magnesium alloys via combined processes of extrusion, rolling and ageing. Scr. Mater. 64 (2011), pp. 950–953. doi: 10.1016/j.scriptamat.2011.01.042
  • S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding, Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy. J. Alloys Compd. 427 (2007), pp. 316–323. doi: 10.1016/j.jallcom.2006.03.015
  • K. Yamada, H. Hoshikawa, S. Maki, T. Ozaki, Y. Kuroki, S. Kamado, and Y. Kojima, Enhanced age-hardening and formation of plate precipitates in Mg-Gd-Ag alloys. Scr. Mater. 61 (2009), pp. 636–639. doi: 10.1016/j.scriptamat.2009.05.044
  • Y. Zhang, Y.J. Wu, L.M. Peng, P.H. Fu, F. Huang, and W.J. Ding, Microstructure evolution and mechanical properties of an ultra-high strength casting Mg-15.6 Gd-1.8 Ag-0.4 Zr alloy. J. Alloys Compd. 615 (2014), pp. 703–711. doi: 10.1016/j.jallcom.2014.07.028
  • J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48 (2003), pp. 1009–1015. doi: 10.1016/S1359-6462(02)00497-9
  • L.L. Rokhlin and N.I. Nikitina, Magnesium-Gadolinium and magnesium-Gadolinium-yttrium alloys. Z. Metallkd 85 (1994), pp. 819–823.
  • T. Honma, T. Ohkubo, K. Hono, and S. Kamado, Chemistry of nanoscale precipitates in Mg-2.1Gd-0.6Y-0.2Zr (at.%) alloy investigated by the atom probe technique. Mater. Sci. Eng. A 395 (2005), pp. 301–306. doi: 10.1016/j.msea.2004.12.035
  • Z.G. Ding, W. Liu, H. Sun, S. Li, D.L. Zhang, Y.H. Zhao, E.J. Lavernia, and Y.T. Zhu, Origins and dissociation of pyramida <c+a> dislocations in magnesium and its alloys. Acta Mater. 146 (2018), pp. 265–272. doi: 10.1016/j.actamat.2017.12.049
  • Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, and W.A. Curtin, Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science 359 (2018), pp. 447–452. doi: 10.1126/science.aap8716
  • T. Homma, N. Kunito, and S. Kamado, Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr. Mater. 61 (2009), pp. 644–647. doi: 10.1016/j.scriptamat.2009.06.003
  • W.T. Sun, X.G. Qiao, M.Y. Zheng, X.J. Zhao, H.W. Chen, N. Gao, and M.J. Starink, Achieving ultra-high hardness of nanostructured Mg-8.2Gd-3.2Y-1.0Zn-0.4Zr alloy produced by a combination of high pressure torsion and ageing treatment. Scr. Mater. 155 (2018), pp. 21–25. doi: 10.1016/j.scriptamat.2018.06.009
  • L.R. Xiao, Y. Cao, S. Li, H. Zhou, X.L. Ma, L. Mao, X.C. Sha, Q.D. Wang, Y.T. Zhu, and X.D. Han, The formation mechanism of a novel interfacial phase with high thermal stability in a Mg-Gd-Y-Ag-Zr alloy. Acta Mater. 162 (2019), pp. 214–225. doi: 10.1016/j.actamat.2018.10.005
  • X. Gao and J.F. Nie, Enhanced precipitation-hardening in Mg-Gd alloys containing Ag and Zn. Scr. Mater. 58 (2008), pp. 619–622. doi: 10.1016/j.scriptamat.2007.11.022
  • Q.D. Wang, J. Chen, Z. Zhao, and S.M. He, Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy. Mater. Sci. Eng. A 528 (2010), pp. 323–328. doi: 10.1016/j.msea.2010.09.004
  • H. Zhou, Q.D. WANG, J. Chen, B. Ye, and W. Guo, Microstructure and mechanical properties of extruded Mg-8.5 Gd-2.3 Y-1.8 Ag-0.4 Zr alloy. Trans. Nonferrous Met. Soc. China 22 (2012), pp. 1891–1895. doi: 10.1016/S1003-6326(11)61403-9
  • J. Feng, H.F. Sun, X.W. Li, H. Wang, and W.B. Fang, Effects of Ag variations on dynamic recrystallization, texture, and mechanical properties of ultrafine-grained Mg-3Al-1Zn alloys. J. Mater. Res. 31 (2016), pp. 3360–3371. doi: 10.1557/jmr.2016.348
  • Y. Zhang, W. Rong, Y.J. Wu, L.M. Peng, J.F. Nie, and N. Birbilis, A comparative study of the role of Ag in microstructures and mechanical properties of Mg-Gd and Mg-Y alloys. Mater. Sci. Eng. A 731 (2018), pp. 609–622. doi: 10.1016/j.msea.2018.06.084
  • H. Zhou, G.M. Cheng, X.L. Ma, W.Z. Xu, S.N. Mathaudhu, Q.D. Wang, and Y.T. Zhu, Effect of Ag on interfacial segregation in Mg-Gd-Y-(Ag)-Zr alloy. Acta Mater. 95 (2015), pp. 20–29. doi: 10.1016/j.actamat.2015.05.020
  • S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding, Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250°C. J. Alloys Compd. 421 (2006), pp. 309–313. doi: 10.1016/j.jallcom.2005.11.046
  • J.F. Nie, Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 43 (2012), pp. 3891–3939. doi: 10.1007/s11661-012-1217-2
  • M. Nishijima, K. Hiraga, M. Yamasaki, and Y. Kawamura, The structure of Guinier-Preston Zones in an Mg-2 at%Gd-1 at%Zn alloy studied by transmission electron microscopy. Mater. Trans. 49 (2008), pp. 227–229. doi: 10.2320/matertrans.MEP2007257
  • J.F. Nie, K. Oh-ishi, X. Gao, and K. Hono, Solute segregation and precipitation in a creep-resistant Mg-Gd-Zn alloy. Acta Mater. 56 (2008), pp. 6061–6076. doi: 10.1016/j.actamat.2008.08.025
  • Y.M. Zhu, A.J. Morton, and J.F. Nie, Characterisation of intermetallic phases in an Mg-Y-Ag-Zn casting alloy. Phil. Mag. Lett. 90 (2010), pp. 173–181. doi: 10.1080/09500830903489595
  • K. Saito, M. Nishijima, and K. Hiraga, Stabilization of Guinier-Preston zones in hexagonal close-packed Mg-Gd-Zn alloys studied by transmission electron microscopy. Mater. Trans. 51 (2010), pp. 1712–1714. doi: 10.2320/matertrans.M2010173
  • K. Saito, A. Yasuhara, and K. Hiraga, Microstructural changes of Guinier-Preston zones in an Mg-1.5 at%Gd-1at%Zn alloy studied by HAADF-STEM technique. J. Alloys Compd. 509 (2011), pp. 2031–2038. doi: 10.1016/j.jallcom.2010.10.129
  • J.F. Nie, Y.M. Zhu, J.Z. Liu, and X.Y. Fang, Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340 (2013), pp. 957–960. doi: 10.1126/science.1229369
  • M. Nishijima and K. Hiraga, Structural changes of precipitates in an Mg-5at%Gd alloy studied by transmission electron microscopy. Mater. Trans. 48 (2007), pp. 10–15. doi: 10.2320/matertrans.48.10
  • M. Nishijima, K. Hiraga, M. Yamasaki, and Y. Kawamura, Characterization of β′ phase precipitates in an Mg-5at%Gd alloy aged in a peak hardness condition, studied by high-angle annular detector dark-field scanning transmission electron microscopy. Mater. Trans. 47 (2006), pp. 2109–2112. doi: 10.2320/matertrans.47.2109
  • X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, W.J. Ding, and J.F. Nie, Microstructure evolution in a Mg-15Gd-0.5Zr (wt.%) alloy during isothermal aging at 250°C. Mater. Sci. Eng. A 431 (2006), pp. 322–327. doi: 10.1016/j.msea.2006.06.018
  • H. Zhou, W.Z. Xu, W.W. Jian, G.M. Cheng, X.L. Ma, W. Guo, S.N. Mathaudhu, Q.D. Wang, and Y.T. Zhu, A new metastable precipitate phase in Mg-Gd-Y-Zr alloy. Phil. Mag. 94 (2014), pp. 2403–2409. doi: 10.1080/14786435.2014.913115
  • Z. Li, J.X. Zheng, and B. Chen, Unravelling the structure of γ″ in Mg-Gd-Zn: an atomic-scale HAADF-STEM investigation. Mater. Charact. 120 (2016), pp. 345–348. doi: 10.1016/j.matchar.2016.08.011
  • D.B. Williams and C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed., Springer, Boston, 2009, pp. 760.
  • Y.M. Zhu, K. Oh-ishi, N.C. Wilson, K. Hono, A.J. Morton, and J.F. Nie, Precipitation in a Ag-containing Mg-Y-Zn alloy. Mater. Sci. Eng. A 47 (2016), pp. 927–940.
  • Y.M. Zhu, A.J. Morton, and J.F. Nie, The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys. Acta Mater. 58 (2010), pp. 2936–2947. doi: 10.1016/j.actamat.2010.01.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.