156
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Stiffness based technique to probe cyclic damage accumulation in micro-structurally graded bond coats via micro-beam bending tests

ORCID Icon &
Pages 2016-2050 | Received 19 Jul 2018, Accepted 09 Apr 2019, Published online: 13 May 2019

References

  • A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 46(5) (2001), pp. 505–553. doi: 10.1016/S0079-6425(00)00020-7
  • D.M. Lipkin and D.R. Clarke, Measurement of the stress in oxide scales formed by oxidation of alumina-forming alloys. Oxid. Met. 45(3) (1996), pp. 267–280. doi: 10.1007/BF01046985
  • J.W. Holmes and F.A. McClintock, The chemical and mechanical processes of thermal fatigue degradation of an aluminide coating. Metall. Trans. A. 21(4) (1990), pp. 1209–1222. doi: 10.1007/BF02656540
  • M.Z. Alam, B. Srivathsa, S.V. Kamat, V. Jayaram, N. Hazari, and D.K. Das, Mechanism of failure in a free-standing Pt–aluminide bond coat during tensile testing at room temperature. Mater. Sci. Eng. A. 527(3) (2010), pp. 842–848. doi: 10.1016/j.msea.2009.09.017
  • R. Nützel, E. Affeldt, and M. Göken, Damage evolution during thermo-mechanical fatigue of a coated monocrystalline nickel-base superalloy. Int. J. Fatigue. 30(2) (2008), pp. 313–317. doi: 10.1016/j.ijfatigue.2007.01.045
  • N. Jaya, V. Jayaram, and S.K. Biswas, A new method for fracture toughness determination of graded (Pt, Ni) Al bond coats by microbeam bend tests. Philos. Mag. 92(25–27) (2012), pp. 3326–3345. doi: 10.1080/14786435.2012.669068
  • M.Z. Alam, S.V. Kamat, V. Jayaram and D.K. Das, Tensile behavior of a free-standing Pt-aluminide (PtAl) bond coat. Acta Mater. 61(4) (2013), pp. 1093–1105. doi: 10.1016/j.actamat.2012.10.012
  • V.K. Tolpygo and D.R. Clarke, On the rumpling mechanism in nickel-aluminide coatings: part II: characterization of surface undulations and bond coat swelling. Acta Mater. 52(17) (2004), pp. 5129–5141.
  • V.K. Tolpygo and D.R. Clarke, On the rumpling mechanism in nickel-aluminide coatings: part I: an experimental assessment. Acta Mater. 52(17) (2004), pp. 5115–5127.
  • E.P. Busso, Z.Q. Qian, M.P. Taylor, and H.E. Evans, The influence of bondcoat and topcoat mechanical properties on stress development in thermal barrier coating systems. Acta Mater. 57(8) (2009), pp. 2349–2361. doi: 10.1016/j.actamat.2009.01.017
  • M.P. Taylor, H.E. Evans, E.P. Busso, and Z.Q. Qian, Creep properties of a Pt–aluminide coating. Acta Mater. 54(12) (2006), pp. 3241–3252. doi: 10.1016/j.actamat.2006.03.010
  • M. Watanabe, D.R. Mumm, S. Chiras, and A.G. Evans, Measurement of the residual stress in a Pt–aluminide bond coat. Scr. Mater. 46(1) (2002), pp. 67–70. doi: 10.1016/S1359-6462(01)01198-8
  • R. Panat, S. Zhang, and K.J. Hsia, Bond coat surface rumpling in thermal barrier coatings. Acta Mater. 51(1) (2003), pp. 239–249. doi: 10.1016/S1359-6454(02)00395-6
  • I.T. Spitsberg, D.R. Mumm, and A.G. Evans, On the failure mechanisms of thermal barrier coatings with diffusion aluminide bond coatings. Mater. Sci. Eng. A. 394(1–2) (2005), pp. 176–191. doi: 10.1016/j.msea.2004.11.038
  • M.G. Mueller, V. Pejchal, G. Žagar, A. Singh, M. Cantoni, and A. Mortensen, Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams. Acta Mater. 86 (2015), pp. 385–395. doi: 10.1016/j.actamat.2014.12.016
  • F.Y. Cui and R.P. Vinci, A chevron-notched bowtie micro-beam bend test for fracture toughness measurement of brittle materials. Scr. Mater. 132 (2017), pp. 53–57. doi: 10.1016/j.scriptamat.2017.01.031
  • S. Brinckmann, K. Matoy, C. Kirchlechner, and G. Dehm, On the influence of microcantilever pre-crack geometries on the apparent fracture toughness of brittle materials. Acta Mater. 136 (2017), pp. 281–287. doi: 10.1016/j.actamat.2017.07.014
  • T. Sumigawa, K. Byungwoon, Y. Mizuno, T. Morimura, and T. Kitamura, In situ observation on formation process of nanoscale cracking during tension-compression fatigue of single crystal copper micron-scale specimen. Acta Mater. 153 (2018), pp. 270–278. doi: 10.1016/j.actamat.2018.04.061
  • R. Schwaiger and O. Kraft, Size effects in the fatigue behavior of thin Ag films. Acta Mater. 51(1) (2003), pp. 195–206. doi: 10.1016/S1359-6454(02)00391-9
  • R. Schwaiger, G. Dehm, and O. Kraft, Cyclic deformation of polycrystalline Cu films. Philos. Mag. 83(6) (2003), pp. 693–710. doi: 10.1080/0141861021000056690
  • A.H.S. Iyer, K. Stiller, and M.H. Colliander, Room temperature plasticity in thermally grown sub-micron oxide scales revealed by micro-cantilever bending. Scr. Mater. 144 (2018), pp. 9–12. doi: 10.1016/j.scriptamat.2017.09.036
  • M.W. Kapp, T. Kremmer, C. Motz, B. Yang, and R. Pippan, Structural instabilities during cyclic loading of ultrafine-grained copper studied with micro bending experiments. Acta Mater. 125 (2017), pp. 351–358. doi: 10.1016/j.actamat.2016.11.040
  • S. Lavenstein, B. Crawford, G.-D. Sim, P.A. Shade, C. Woodward, and J.A. El-Awady, High frequency in situ fatigue response of Ni-base superalloy René-N5 microcrystals. Acta Mater. 144 (2018), pp. 154–163. doi: 10.1016/j.actamat.2017.10.049
  • L. Eisenhut, F. Schaefer, P. Gruenewald, L. Weiter, M. Marx, and C. Motz, Effect of a dislocation pile-up at the neutral axis on trans-crystalline crack growth for micro-bending fatigue. Int. J. Fatigue 94 (2017), pp. 131–139. doi: 10.1016/j.ijfatigue.2016.09.015
  • G. Jichen and A.J. Wilkinson, Ultra small scale high cycle fatigue testing by micro-cantilevers, Proceedings of Nano-mechanical testing in materials research and development, 2015 . Available at http://dc.engconfintl.org/cgi/viewcontent.cgi?article=1085&context=nanomechtest_v.
  • B.N. Jaya and V. Jayaram, Crack stability in edge-notched clamped beam specimens: modeling and experiments. Int. J. Fract. 188(2) (2014), pp. 213–228. doi: 10.1007/s10704-014-9956-2
  • D.K. Das, S.V. Joshi, and V. Singh, Effect of prealuminizing diffusion treatment on microstructural evolution of high-activity pt-aluminide coatings. Metall. Mater. Trans. A. 31(8) (2000), pp. 2037–2047. doi: 10.1007/s11661-000-0231-y
  • G.R. Krishna, D.K. Das, V. Singh, and S.V. Joshi, Role of Pt content in the microstructural development and oxidation performance of Pt–aluminide coatings produced using a high-activity aluminizing process. Mater. Sci. Eng. A. 251(1–2) (1998), pp. 40–47. doi: 10.1016/S0921-5093(98)00655-8
  • M.F. Doerner and W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4) (1986), pp. 601–609. doi: 10.1557/JMR.1986.0601
  • C. Ullner, E. Reimann, H. Kohlhoff, and A. Subaric-Leitis, Effect and measurement of the machine compliance in the macro range of instrumented indentation test. Meas. J. Int. Meas. Confed. 43(2) (2010), pp. 216–222. doi: 10.1016/j.measurement.2009.09.009
  • B. Nagamani Jaya, Micro-scale fracture testing of graded (Pt, Ni) Al bond coats, Ph.D. thesis, IISc, June, 2013 .
  • B. Nagamani Jaya, S. Bhowmick, S.A.S. Asif, and V. Jayaram, In-situ study of microscale fracture of diffusion aluminide bond coats: effect of platinum. J. Mater. Res. 30(21) (2015), pp. 3343–3353. doi: 10.1557/jmr.2015.285
  • D.K. Das, Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys. Prog. Mater. Sci. 58(2) (2013), pp. 151–182. doi: 10.1016/j.pmatsci.2012.08.002
  • D. K. Das, Development of Pt-Al coating on CM-247 LC alloy and its oxidation characteristics, Ph.D. thesis, Banaras Hindu university, 2002 .
  • M.R. Jackson and J.R. Rairden, The aluminization of platinum and platinum-coated IN-738. Metall. Trans. A. 8(11) (1977), pp. 1697–1707. doi: 10.1007/BF02646872
  • F. Pedraza, A.D. Kennedy, J. Kopecek, and P. Moretto, Investigation of the microstructure of platinum-modified aluminide coatings. Surf. Coatings Technol. 200(12–13) (2006), pp. 4032–4039. doi: 10.1016/j.surfcoat.2004.12.019
  • J. Benoist, K.F. Badawi, A. Malié, and C. Ramade, Microstructure of Pt modified aluminide coatings on Ni-based superalloys without prior Pt diffusion. Surf. Coatings Technol. 194(1) (2005), pp. 48–57. doi: 10.1016/j.surfcoat.2004.04.094
  • K.-M. Chang, R. Darolia, and H.A. Lipsitt, Cleavage fracture in B2 aluminides. Acta Metall. Mater. 40(10) (1992), pp. 2727–2737. doi: 10.1016/0956-7151(92)90343-D
  • H. Vehoff, P. Ochmann, M. Göken, and M. Große Gehling, Deformation processes at crack tips in NiAl single- and bicrystals. Mater. Sci. Eng. A. 239–240 (1997), pp. 378–385. doi: 10.1016/S0921-5093(97)00606-0
  • M.Z. Alam, S.V. Kamat, V. Jayaram, and D.K. Das, Micromechanisms of fracture and strengthening in free-standing Pt-aluminide bond coats under tensile loading. Acta Mater. 67 (2014), pp. 278–296. doi: 10.1016/j.actamat.2013.12.033
  • K. Flores and R. Dauskardt, Fracture and fatigue crack-growth behavior of single crystal NiAl. Scr. Mater 36(12) (1997), pp. 1377–1382. doi: 10.1016/S1359-6462(97)00049-3
  • F. Bohner, J.K. Gregory, U. Weber, and S. Schmauder, Yielding in notch tensile specimens with graded microstructures. Mech. Mater. 31(10) (1999), pp. 627–636. doi: 10.1016/S0167-6636(99)00026-5
  • R.D. Noebe and B.A. Lerch, Room temperature cyclic deformation behavior of cast and extruded NiAl. Scr. Metall. Mater. 27(9) (1992), pp. 1161–1166. doi: 10.1016/0956-716X(92)90592-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.