1,119
Views
9
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A computational approach towards modelling dislocation transmission across phase boundaries

, , &
Pages 2126-2151 | Received 09 Nov 2018, Accepted 24 Apr 2019, Published online: 30 May 2019

References

  • J.P. Hirth and J. Lothe, Theory of Dislocations, Wiley, New York, 1982.
  • E. Van der Giessen and A. Needleman, Discrete dislocation plasticity: A simple planar model, Model. Simul. Mater. Sci. Eng. 3(5) (1995), pp. 689–735. doi: 10.1088/0965-0393/3/5/008
  • H.H.M. Cleveringa, E. Van der Giessen and A. Needleman, A discrete dislocation analysis of mode I crack growth, J. Mech. Phys. Solids 48(6–7) (2000), pp. 1133–1157. doi: 10.1016/S0022-5096(99)00076-9
  • E. Van der Giessen and A. Needleman, Micromechanics simulations of fracture, Annu. Rev. Mater. Res. 32(1) (2002), pp. 141–162. doi: 10.1146/annurev.matsci.32.120301.102157
  • A. Needleman and E. Van der Giessen, Micromechanics of fracture: Connecting physics, MRS Bull. 26(3) (2001), pp. 211–214. doi: 10.1557/mrs2001.44
  • M.P. O'Day and W.A. Curtin, Bimaterial interface fracture: A discrete dislocation model, J. Mech. Phys. Solids 53(2) (2005), pp. 359–382. doi: 10.1016/j.jmps.2004.06.012
  • S. Das and V. Gavini, Electronic structure study of screw dislocation core energetics in aluminum and core energetics informed forces in a dislocation aggregate, J. Mech. Phys. Solids 104 (2017), pp. 115–143. doi: 10.1016/j.jmps.2017.03.010
  • J. Wang, Atomistic simulations of dislocation pileup: Grain boundaries interaction, J. Miner., Metals Mater. Soc. 67(7) (2015), pp. 1515–1525. doi: 10.1007/s11837-015-1454-0
  • A. Elzas and B. Thijsse, Dislocation impacts on iron/precipitate interfaces under shear loading, Model. Simul. Mater. Sci. Eng. 24 (2016), pp. 85006. doi: 10.1088/0965-0393/24/8/085006
  • R.E. Miller and E.B. Tadmor, The quasicontinuum method: Overview, applications and current directions, J. Comput.-Aid. Mater. Design 9(3) (2002), pp. 203–239. doi: 10.1023/A:1026098010127
  • L.E. Shilkrot, R.E. Miller and W.A. Curtin, Multiscale plasticity modeling: Coupled atomistics and discrete dislocation mechanics, J. Mech. Phys. Solids 52(4) (2004), pp. 755–787. doi: 10.1016/j.jmps.2003.09.023
  • W. Yu and Z. Wang, Interactions between edge lattice dislocations and Σ11 symmetrical tilt grain boundary: Comparisons among several FCC metals and interatomic potentials, Philos. Mag. 94(20) (2014), pp. 2224–2246. doi: 10.1080/14786435.2014.910318
  • M.P. Dewald and W.A. Curtin, Multiscale modelling of dislocation/grain-boundary interactions: I. Edge dislocations impinging on Σ11 (1 1 3) tilt boundary in Al, Model. Simul. Mater. Sci. Eng. 15(1) (2007), pp. S193–S215. doi: 10.1088/0965-0393/15/1/S16
  • M.P. Dewald and W.A. Curtin, Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al, Philos. Mag. 87(30) (2007), pp. 4615–4641. doi: 10.1080/14786430701297590
  • M.P. Dewald and W.A. Curtin, Multiscale modeling of dislocation/grain-boundary interactions: III. 60∘ dislocations impinging on Σ3, Σ9 and Σ11 tilt boundaries in al, Model. Simul. Mater. Sci. Eng. 19(5) (2011), pp. 055002. doi: 10.1088/0965-0393/19/5/055002
  • A. Acharya, A model of crystal plasticity based on the theory of continuously distributed dislocations, J. Mech. Phys. Solids 49(4) (2001), pp. 761–784. doi: 10.1016/S0022-5096(00)00060-0
  • E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen, in Ergebnisse der Angewandten Mathematik, 5th ed., Srpinger, 1958, pp. 1–179
  • E. Kröner, Continuum theory of defects, in Proc. Summer School on the Physics of Defects, North-Holland, Amsterdam. Les Houches, France, 1981, pp. 215–315.
  • T. Mura, Continuous distribution of moving dislocations, Philos. Mag. 8(89) (1963), pp. 843–857. doi: 10.1080/14786436308213841
  • N. Fox, A continuum theory of dislocations for single crystals, IMA J. Appl. Math. 2(4) (1966), pp. 285–298. doi: 10.1093/imamat/2.4.285
  • J.R. Willis, Second-order effects of dislocations in anisotropic crystals, Int. J. Eng. Sci. 5(2) (1967), pp. 171–190. doi: 10.1016/0020-7225(67)90003-1
  • R. De Wit, Linear theory of static disclinations, in Fundamental Aspects of Dislocations, NBS Spec. Publ. 317, 1970, pp. 651–680.
  • C. Fressengeas, V. Taupin and L. Capolungo, An elasto-plastic theory of dislocation and disclination fields, Int. J. Solids Struct. 48(25-26) (2011), pp. 3499–3509. doi: 10.1016/j.ijsolstr.2011.09.002
  • X. Zhang, A. Acharya, N.J. Walkington and J. Bielak, A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations, J. Mech. Phys. Solids 84 (2015), pp. 145–195. doi: 10.1016/j.jmps.2015.07.004
  • X. Zhang, A continuum model for dislocation pile-up problems, Acta Mater. 128 (2017), pp. 428–439. doi: 10.1016/j.actamat.2017.01.057
  • C. Shen and Y. Wang, Incorporation of γ-surface to phase field model of dislocations: Simulating dislocation dissociation in fcc crystals, Acta Mater. 52(3) (2004), pp. 683–691. doi: 10.1016/j.actamat.2003.10.014
  • A.G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, Chichester, 1983.
  • J.R. Mianroodi and B. Svendsen, Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems, J. Mech. Phys. Solids 77 (2015), pp. 109–122. doi: 10.1016/j.jmps.2015.01.007
  • J.R. Mianroodi, A. Hunter, I.J. Beyerlein and B. Svendsen, Theoretical and computational comparison of models for dislocation dissociation and stacking fault/core formation in fcc crystals, J. Mech. Phys. Solids 95 (2016), pp. 719–741. doi: 10.1016/j.jmps.2016.04.029
  • Y. Zeng, A. Hunter, I.J. Beyerlein and M. Koslowski, A phase field dislocation dynamics model for a bicrystal interface system: An investigation into dislocation slip transmission across cube-on-cube interfaces, Int. J. Plast. 79 (2016), pp. 293–313. doi: 10.1016/j.ijplas.2015.09.001
  • P.M. Anderson and Z. Li, A Peierls analysis of the critical stress for transmission of a screw dislocation across a coherent, sliding interface, Mater. Sci. Eng. A 319–321 (2001), pp. 182–187. doi: 10.1016/S0921-5093(00)02032-3
  • M.A. Shehadeh, G. Lu, S. Banerjee, N. Kioussis and N. Ghoniem, Dislocation transmission across the Cu/Ni interface: A hybrid atomistic-continuum study, Philos. Mag. 87(10) (2007), pp. 1513–1529. doi: 10.1080/14786430601055379
  • R. Peierls, The size of a dislocation, Proc. Phys. Soc. 52(1) (1940), pp. 34–37. doi: 10.1088/0959-5309/52/1/305
  • F.R.N. Nabarro, Dislocations in a simple cubic lattice, Proc. Phys. Soc. 59(2) (1947), pp. 256–272. doi: 10.1088/0959-5309/59/2/309
  • E.S. Pacheco and T. Mura, Interaction between a screw dislocation and a bimetallic interface, J. Mech. Phys. Solids 17 (1969), pp. 163–170. doi: 10.1016/0022-5096(69)90030-1
  • A.K. Head, X. The interaction of dislocations and boundaries, London Edinb. Dublin Philos. Mag. J. Sci. 44(348) (1953), pp. 92–94. doi: 10.1080/14786440108520278
  • J. Frenkel, Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper, Zeitschrift für Physik 37(7) (1926), pp. 572–609. doi: 10.1007/BF01397292
  • V. Vítek, Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag. 18(154) (1968), pp. 773–786. doi: 10.1080/14786436808227500
  • B. Joós, Q. Ren and M.S. Duesbery, Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces, Phys. Rev. B 50(9) (1994), pp. 5890–5898. doi: 10.1103/PhysRevB.50.5890
  • G. Schoeck, The core structure, recombination energy and Peierls energy for dislocations in Al, Philos. Mag. A 81(5) (2001), pp. 1161–1176. doi: 10.1080/01418610108214434
  • G. Schoeck, The energy of dislocation dipoles, Philos. Mag. 94(14) (2014), pp. 1542–1551. doi: 10.1080/14786435.2014.889327
  • J.R. Rice, Dislocation nucleation from a crack tip: An analysis based on the Peierls concept, J. Mech. Phys. Solids 40(2) (1992), pp. 239–271. doi: 10.1016/S0022-5096(05)80012-2
  • G. Xu, A.S. Argon and M. Ortiz, Nucleation of dislocations from crack tips under mixed modes of loading: Implications for brittle against ductile behaviour of crystals, Philos. Mag. A 72(2) (1995), pp. 415–451. doi: 10.1080/01418619508239933
  • G. Xu, A.S. Argon and M. Ortiz, Critical configurations for dislocation nucleation from crack tips, Philos. Mag. A 75(2) (1997), pp. 341–367. doi: 10.1080/01418619708205146
  • G. Xu and M. Ortiz, A variation boundary integral method for the analysis of 3-D cracks of arbitrary geometry modeled as continuous distributions of dislocation loops, Int. J. Numer. Methods Eng. 36(21) (1993), pp. 3675–3701. doi: 10.1002/nme.1620362107
  • J.D. Eshelby, LXXXII. Edge dislocations in anisotropic materials, London Edinb. Dublin Philos. Mag. J. Sci. 40(308) (1949), pp. 903–912. doi: 10.1080/14786444908561420
  • G. Xu, A variational boundary integral method for the analysis of three-dimensional cracks of arbitrary geometry in anisotropic elastic solids, J. Appl. Mech. 67(2) (2000), pp. 403–408. doi: 10.1115/1.1305276
  • G. Xu and C. Zhang, Analysis of dislocation nucleation from a crystal surface based on the Peierls-Nabarro dislocation model, J. Mech. Phys. Solids 51(8) (2003), pp. 1371–1394. doi: 10.1016/S0022-5096(03)00067-X
  • Y. Xiang, H. Wei, P. Ming and W. E, A generalized Peierls-Nabarro model for curved dislocations and core structures of dislocation loops in Al and Cu, Acta Mater. 56(7) (2008), pp. 1447–1460. doi: 10.1016/j.actamat.2007.11.033
  • L. Lejček, Peierls-Nabarro model of planar dislocation cores in b.c.c. crystals, Czech. J. Phys. B 22(9) (1972), pp. 802–812. doi: 10.1007/BF01694858
  • F. Kroupa and L. Lejcek, Splitting of dislocations in the Peierls-Nabarro model, Czech. J. Phys. B 22(9) (1972), pp. 813–825. doi: 10.1007/BF01694859
  • M.S. Duesbery, D.J. Michel, E. Kaxiras and B. Joós, Molecular dynamics studies of defects in Si, MRS Proc. 209 (1990), p. 125. doi: 10.1557/PROC-209-125
  • E. Kaxiras and M.S. Duesbery, Free energies of generalized stacking faults in Si and implications for the brittle-ductile transition, Phys. Rev. Lett. 70(24) (1993), pp. 3752–3755. doi: 10.1103/PhysRevLett.70.3752
  • R. Asaro and V. Lubarda, Mechanics of Solids and Materials, Cambridge University Press, Cambridge, 2006.
  • A.K. Head, Edge dislocations in inhomogeneous media, Proc. Phys. Soc. Sect. B 66 (1953), pp. 793–801. doi: 10.1088/0370-1301/66/9/309