230
Views
32
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Impurity related optical properties in tuned quantum dot/ring systems

, &
Pages 2457-2486 | Received 13 Feb 2019, Accepted 10 May 2019, Published online: 25 May 2019

References

  • T. Chakraborty, Quantum Dots – A Survey of the Properties of Artificial Atoms, Elsevier, Amsterdam, 1999.
  • P.A. Maksyam and T. Chakraborty, Quantum dots in a magnetic field: Role of electron-electron interactions, Phys. Rev. Lett. 65 (1990), pp. 108–111. doi: 10.1103/PhysRevLett.65.108
  • C. Bose and C.K. Sarkar, Effect of a parabolic potential on the impurity binding energy in spherical quantum dots, Phys. B 253 (1998), pp. 238–241. doi: 10.1016/S0921-4526(98)00407-4
  • B. Çakir, Y. Yakar, and A. Özmen, Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential, J. Lumin. 132 (2012), pp. 2659–2664. doi: 10.1016/j.jlumin.2012.03.065
  • B. Szafran, P. Sęp, J. Adamowski, and S. Bednarek, Single-electron charging spectra: From natural to artificial atoms, Phys. E 18 (2003), pp. 523–529. doi: 10.1016/S1386-9477(03)00268-6
  • L. Jacak, P. Hawrylak, and A. Wójos, Quantum Dots, Berlin, Springer-Verlag, 1998
  • M.A. Kastner, The single-electron transistor, Rev. Mod. Phys. 64 (1992), pp. 849–858. doi: 10.1103/RevModPhys.64.849
  • S. Tarucha, D.G. Austing, T. Honda, R.J. van der Haage, and L. Kouwenhoven, Shell filling and spin effects in a few electron quantum dot, Phys. Rev. Lett. 77 (1996), pp. 3613–3616. doi: 10.1103/PhysRevLett.77.3613
  • X. Hu, R. de Sousa, and S. Das Sarma, Interplay between Zeeman coupling and swap action in spin-based quantum computer models: Error correction in inhomogeneous magnetic fields, Phys. Rev. Lett. 86 (2001), pp. 918–921. doi: 10.1103/PhysRevLett.86.918
  • P. Matagne, J.-P. Leburton, J. Destine, and G. Cantraine, Modeling of the electronic properties of vertical quantum dots by the finite element method, J. Comput. Model. Eng. Sci. 1 (2000), pp. 1–10.
  • N.A. Bruce and P.A. Maksym, Quantum states of interacting electrons in a real quantum dot, Phys. Rev. B 61 (2000), pp. 4718–4726. doi: 10.1103/PhysRevB.61.4718
  • S. Bednarek, B. Szafran, and J. Adamowski, Solution of the Poisson-Schrödinger problem for a single-electron transistor, Phys. Rev. B 61 (2000), pp. 4461–4464. doi: 10.1103/PhysRevB.61.4461
  • S. Bednarek, B. Szafran, and J. Adamowski, Theoretical description of electronic properties of vertical gated quantum dots, Phys. Rev. B 64 (2001), pp. 195303 (13pp). doi: 10.1103/PhysRevB.64.195303
  • C.Y. Lin and Y.K. Ho, Fingerprints in the Optical and Transport Properties of Quantum Dots, Academia Sinica, Taiwan, 2012.
  • H.M. Müller and S.E. Koonin, Phase transitions in quantum dots, Phys. Rev. B 54 (1996), pp. 14532–14539. doi: 10.1103/PhysRevB.54.14532
  • C. Yannoulenas and U. Landman, Spontaneous symmetry breaking in single and molecular quantum dots, Phys. Rev. Lett. 82 (1999), pp. 5325–5328. doi: 10.1103/PhysRevLett.82.5325
  • B. Reusch, W. Häusler, and H. Grabert, Wigner molecules in quantum dots, Phys. Rev. B 63 (2001), pp. 113313 (4 pp). doi: 10.1103/PhysRevB.63.113313
  • M. Fujito, A. Natori, and H. Yasunaga, Many-electron ground states in anisotropic parabolic quantum dots, Phys. Rev. B 53 (1996), pp. 9952–9958. doi: 10.1103/PhysRevB.53.9952
  • M. Eto, Electronic structures of few electrons in a quantum dot under magnetic fields, Jpn. J. Appl. Phys. 36 (1997), pp. 3924–3927. doi: 10.1143/JJAP.36.3924
  • S.R.E. Yang and A.H. McDonald, Coupling between edge and bulk in strong-field quantum dots, Phys. Rev. B 66 (2002), pp. 041304(R). (4pp). doi: 10.1103/PhysRevB.66.041304
  • M. Manninen, S. Viefers, M. Koskinen, and S.M. Reimann, Many-body spectrum and particle localization in quantum dots and finite rotating bose condensates, Phys. Rev. B 64 (2001), pp. 245322 (6pp). doi: 10.1103/PhysRevB.64.245322
  • B. Szafran, J. Adamowski, and S. Bednarek, Electron-electron correlation in quantum dots, Phys. E 5 (2000), pp. 185–195. doi: 10.1016/S1386-9477(99)00039-9
  • S.M. Reimann, M. Koskinen, M. Manninen, and B.R. Mottelson, Quantum dots in magnetic fields: Phase diagram and broken symmetry at the maximum-Density-Droplet edge, Phys. Rev. Lett. 83 (1999), pp. 3270–3273. doi: 10.1103/PhysRevLett.83.3270
  • W. Xie, A study of two confined electrons using the Woods-Saxon potential, J. Phys.: Condens. Matter 21 (2009), pp. 115802 (6pp).
  • A.I. Ivanov and O.R. Lobanova, Magnetic field effects on circular cylinder quantum dots, Phys. E 23 (2004), pp. 61–64. doi: 10.1016/j.physe.2004.01.010
  • A. Kumar, S.E. Laux, and F. Stern, Electron states in a GaAs quantum dot in a magnetic field, Phys. Rev. B 42 (1990), pp. 5166–5175. doi: 10.1103/PhysRevB.42.5166
  • J. Alsmeier, E. Batke, and J.P. Kotthaus, Voltage-tunable quantum dots on silicon, Phys. Rev. B 41 (1990), pp. 1699–1702. doi: 10.1103/PhysRevB.41.1699
  • T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Nonlocal dynamic response and level crossings in quantum-dot structures, Phys. Rev. Lett. 64 (1990), pp. 788–791. doi: 10.1103/PhysRevLett.64.788
  • C. Sikorski and U. Merkt, Spectroscopy of electronic states in InSb quantum dots, Phys. Rev. Lett. 62 (1989), pp. 2164–2167. doi: 10.1103/PhysRevLett.62.2164
  • B. Meurer, D. Heitmann, and K. Ploog, Single-electron charging of quantum-dot atoms, Phys. Rev. Lett. 68 (1992), pp. 1371–1374. doi: 10.1103/PhysRevLett.68.1371
  • S. Bednarek, B. Szafran, K. Lis, and J. Adamowski, Modeling of electronic properties of electrostatic quantum dots, Phys. Rev. B 68 (2003), pp. 155333 (9pp).
  • B. Szafran, S. Bednarek, and J. Adamowski, Parity symmetry and energy spectrum of excitons in coupled self-assembled quantum dots, Phys. Rev. B 64 (2001), pp. 125301 (10pp). doi: 10.1103/PhysRevB.64.125301
  • A. Gharaati and R. Khordad, A new confinement potential in spherical quantum dots: Modified Gaussian potential, Superlattices Microstruct. 48 (2010), pp. 276–287. doi: 10.1016/j.spmi.2010.06.014
  • R. Khordad, Use of modified Gaussian potential to study an exciton in a spherical quantum dot, Superlattices Microstruct. 54 (2013), pp. 7–15. doi: 10.1016/j.spmi.2012.10.014
  • T. Chen, W. Xie, and S. Liang, Optical and electronic properties of a two-dimensional quantum dot with an impurity, J. Lumin. 139 (2013), pp. 64–68. doi: 10.1016/j.jlumin.2013.02.030
  • V.M. Fomin, Physics of Quantum Rings, 2nd ed., Springer, Berlin, 2018.
  • H.D. Kim, K. Kyhm, R.A. Taylor, G. Nogues, K.C. Je, E.H. Lee, and J.D. Song, Asymmetry of localised states in a single quantum ring: Polarization dependence of excitons and biexcitons, Appl. Phys. Lett. 102 (2013), pp. 033112 (4pp).
  • T. Raz, D. Ritter, and G. Bahir, Formation of InAs self-assembled quantum rings on InP, Appl. Phys. Lett. 82 (2003), pp. 1706–1708 doi: 10.1063/1.1560868
  • J. Sormunen, J. Riikonen, M. Mattila, J. Tiilikainen, M. Sopanen, and H. Lipsanen, Transformation of self-Assembled InAs/InP quantum dots into quantum rings without capping, Nano Lett. 5 (2005), pp. 1541–1543. doi: 10.1021/nl050646v
  • T. Kuroda, T. Mano, T. Ochiai, S. Sanguinetti, K. Sakoda, G. Kido, and N. Koguchi, Optical transitions in quantum ring complexes, Phys. Rev. B. 72 (2005), pp. 205301 (8pp). doi: 10.1103/PhysRevB.72.205301
  • T-C. Lin, C-H. Lin, H-S. Ling, Y-J. Fu, W-H. Chang, S-D. Lin, and C-P. Lee, Impacts of structural asymmetry on the magnetic response of excitons and biexcitons in single self-assembled In(Ga)As quantum rings, Phys. Rev. B. 80 (2009), pp. 081304(R) (4pp). doi: 10.1103/PhysRevB.80.081304
  • V.M. Fomin, V.N. Gladilin, S.N. Klimin, and J.T. Devreese, Theory of electron energy spectrum and Aharonov-Bohm effect in self-assembled InxGa1−xAs quantum rings in GaAs, Phys. Rev. B. 76 (2007), pp. 235320 (8pp). doi: 10.1103/PhysRevB.76.235320
  • R. Blossey and A. Lorke, Wetting droplet instability and quantum ring formation, Phys. Rev. E. 65 (2002), pp. 021603 (3pp). doi: 10.1103/PhysRevE.65.021603
  • Z. Barticevic, M. Pacheco, and A. Latgé, Quantum rings under magnetic fields: Electronic and optical properties, Phys. Rev. B 62 (2000), pp. 6963–6966. doi: 10.1103/PhysRevB.62.6963
  • J.M. LLorens, C. Trallero-Giner, A. García-Cristóbal, and A. Cantarero, Electronic structure of a quantum ring in a lateral electric field, Phys. Rev. B. 64 (2001), pp. 035309 (6pp). doi: 10.1103/PhysRevB.64.035309
  • J.M. LLorens, C. Trallero-Giner, A. García-Cristóbal, and A. Cantarero, Energy levels of a quantum ring in a lateral electric field, Microelectr. J. 33 (2002), pp. 355–359. doi: 10.1016/S0026-2692(01)00131-8
  • A.K. Manaselyan, M.G. Barseghyan, A.A. Kirakosyan, D. Laroze, and C.A. Duque, Effects of applied lateral electric field and hydrostatic pressure on the intraband optical transitions in a GaAs/Ga1−xAlxAs quantum ring, Phys. E 60 (2014), pp. 95–99. doi: 10.1016/j.physe.2014.02.015
  • A. Radu, A.A. Kirakosyan, D. Laroze, and M.G. Barseghyan, The effects of the intense laser and homogeneous electric fields on the electronic and intraband optical properties of a GaAs/Ga0.7Al0.3As quantum ring, Semicond. Sci. Technol. 30 (2015), pp. 045006 (9pp). doi: 10.1088/0268-1242/30/4/045006
  • D. Bejan, Donor impurity-related nonlinear optical rectification in a two-dimensional quantum ring under magnetic field, Phys. Lett. A 381 (2017), pp. 3307–3313. doi: 10.1016/j.physleta.2017.08.024
  • E.C. Niculescu and D. Bejan, Off-centre impurity-related nonlinear optical absorption, second and third harmonic generation in a two-dimensional quantum ring under magnetic field, Philos. Mag. 97 (2017), pp. 2089–2107. doi: 10.1080/14786435.2017.1323130
  • D. Bejan, C. Stan, and E.C. Niculescu, Effects of electric field and light polarization on the electromagnetically induced transparency in an impurity doped quantum ring, Opt. Mater. 75 (2018), pp. 827–840. doi: 10.1016/j.optmat.2017.11.047
  • N. Raigoza, C.A. Duque, N. Porras-Montenegro, and L.E. Oliveira, Correlated electron-hole transition energies in quantum-well wires: Effects of hydrostatic pressure, Phys. B 371 (2006), pp. 153–157. doi: 10.1016/j.physb.2005.10.096
  • C.M. Duque, A.L. Morales, M.E. Mora-Ramos, and C.A. Duque, Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings, J. Lumin. 143 (2013), pp. 81–88. doi: 10.1016/j.jlumin.2013.04.039
  • M.G. Barseghyan, A.A. Kirakosyan, and C.A. Duque, Hydrostatic pressure, electric and magnetic field effects on shallow donor impurity states and photoionization cross section in cylindrical GaAs/Ga1−xAlxAs quantum dots, Phys. Status Solidi B 246 (2009), pp. 626–629. doi: 10.1002/pssb.200880516
  • L.L. Wang, N. Chen, S. Bin, Y.H. Mo, L.L. Ma, G.L. He, Z.H. Zhang, and J.H. Yuan, Effect of conduction band parabolicity on the spectrum and binding energy of a hydrogenic impurity in GaAs spherical quantum dots, Philos. Mag. 98 (2018), pp. 899–910. doi: 10.1080/14786435.2018.1425009
  • I. Karabulut, H. Safak, and M. Tomak, Nonlinear optical rectification in asymmetrical semiparabolic quantum wells, Solid State Commun. 135 (2005), pp. 735–738. doi: 10.1016/j.ssc.2005.06.001
  • S. Ünlü, I. Karabulut, and H. Safak, Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential, Phys. E 33 (2006), pp. 319–324. doi: 10.1016/j.physe.2006.03.163
  • S. Baskoutas, E. Paspalakis, and A.F. Terzis, Electronic structure and nonlinear optical rectification in a quantum dot: Effects of impurities and external electric field, J. Phys.: Condens. Matter 19 (2007), pp. 395024 (9pp).
  • W.F. Xie, Linear and nonlinear optical properties of a hydrogenic donor in spherical quantum dots, Phys. B 403 (2008), pp. 4319–4322. doi: 10.1016/j.physb.2008.09.021
  • I. Karabulut and S. Baskoutas, Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity, J. Appl. Phys. 103 (2008), pp. 073512 (5pp).
  • D.B. Hayrapetyan, S.M. Amirkhanyan, E.M. Kazaryan, and H.A. Sarkisyan, Effect of hydrostatic pressure on diamagnetic susceptibility of hydrogenic donor impurity in core/shell/shell spherical quantum dot with Kratzer confining potential, Phys. E 84 (2016), pp. 367–371. doi: 10.1016/j.physe.2016.07.028
  • D.B. Hayrapetyan, E.M. Kazaryan, and H.K. Tevosyan, Impurity states in a cylindrical quantum dot with the modified Pöschl-Teller potential, J. Contemp. Phys.-Arme+ 49 (2014), pp. 119–122. doi: 10.3103/S1068337214030062
  • G. Bastard, Hydrogenic impurity states in a quantum well: A simple model, Phys. Rev. B 24 (1981), pp. 4714–4722. doi: 10.1103/PhysRevB.24.4714
  • A.J. Peter, The effect of hydrostatic pressure on binding energy of impurity states in spherical quantum dots, Phys. E 28 (2005), pp. 225–229. doi: 10.1016/j.physe.2005.03.018
  • J.L. Movilla and J. Planelles, Image charges in spherical quantum dots with an off-centered impurity: Algorithm and numerical results, Comput. Phys. Commun. 170 (2005), pp. 144–152. doi: 10.1016/j.cpc.2005.03.109
  • S. Kielich, Nonlinear optical and electro-optical properties of dielectrics and ferroelectrics, Ferroelectrics 4 (1972), pp. 257–282. doi: 10.1080/00150197308235768
  • M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, and I. Sökmen, Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields, J. Lumin. 132 (2012), pp. 901–913. doi: 10.1016/j.jlumin.2011.11.008
  • C.A. Duque, E. Kasapoglu, S. Şakiroğlu, H. Sari, and I. Sökmen, Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field, Appl. Surf. Sci. 257 (2011), pp. 2313–2319. doi: 10.1016/j.apsusc.2010.09.095
  • Y. Yakar, B. Çakir, and A. Özmen, Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential, Opt. Commun. 283 (2010), pp. 1795–1800. doi: 10.1016/j.optcom.2009.12.027
  • G. Rezaei, M.R.K. Vahdani, and B. Vaseghi, Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot, Curr. Appl. Phys. 11 (2011), pp. 176–181. doi: 10.1016/j.cap.2010.07.002
  • B. Çakir, Y. Yakar, A. özmen, M. Özgür Sezer, and M. Şahin, Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot, Superlattices Microstruct. 47 (2010), pp. 556–566. doi: 10.1016/j.spmi.2009.12.002
  • D. Bejan and E.C. Niculescu, Electronic and optical properties of asymmetric GaAs double quantum dots in intense laser fields, Philos. Mag 96:11 (2016), pp. 1131–1149. doi: 10.1080/14786435.2016.1154206
  • S. Şakiroğlu, F. Ungan, U. Yesilgul, M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, and I. Sökmen, Nonlinear optical rectification and the second and third harmonic generation in Pöschl-Teller quantum well under the intense laser field, Phys. Lett. A 376 (2012), pp. 1875–1880. doi: 10.1016/j.physleta.2012.04.028
  • S. Pal and M. Ghosh, Tailoring nonlinear optical rectification coefficient of impurity doped quantum dots by invoking Gaussian white noise, Opt. Quant. Electron. 48 (2016), pp. 372 (18pp). doi: 10.1007/s11082-016-0640-9
  • J. Ganguly, S. Saha, S. Pal, and M. Ghosh, Noise-driven optical absorption coefficients of impurity doped quantum dots, Phys. E 75 (2016), pp. 246–256. doi: 10.1016/j.physe.2015.09.027
  • A. Mandal, S. Sarkar, A.P. Ghosh, and M. Ghosh, Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential, Chem. Phys. 463 (2015), pp. 149–158. doi: 10.1016/j.chemphys.2015.10.014
  • S.H. Dong, M. Lozada-Cassou, J. Yu, F.J. Ángeles, and A.L. Rivera, Hidden symmetries and thermodynamic properties for a harmonic oscillator plus an inverse square potential, J. Quantum Chem. 107 (2007), pp. 366–371. doi: 10.1002/qua.21103
  • I.F.I. Mikhail and A.M. Shafee, Optical absorption in a disk-shaped quantum dot in the presence of an impurity, Phys. B 507 (2017), pp. 142–146. doi: 10.1016/j.physb.2016.11.027
  • D. Bejan, C. Stan, and E.C. Niculescu, Optical properties of an elliptic quantum ring: Eccentricity and electric field effects, Opt. Mater. 78 (2018), pp. 207–219. doi: 10.1016/j.optmat.2018.02.008
  • E.C. Niculescu and D. Bejan, Off-centre impurity-related nonlinear optical absorption, second and third harmonic generation in a two-dimensional quantum ring under magnetic field, Philos. Mag. 97:24 (2017), pp. 2089–2107. doi: 10.1080/14786435.2017.1323130
  • M. Ciurla, J. Adamowski, B. Szafran, and S. Bednarek, Modelling of confinement potentials in quantum dots, Phys. E 15 (2002), pp. 261–268. doi: 10.1016/S1386-9477(02)00572-6
  • B. Gülveren, Ü. Atav, M. Sąhin, and M. Tomak, A parabolic quantum dot with N electrons and an impurity, Phys. E 30 (2005), pp. 143–149. doi: 10.1016/j.physe.2005.08.007
  • A.J. Peter, Polarizabilities of shallow donors in spherical quantum dots with parabolic confinement, Phys. Lett. A 355 (2006), pp. 59–62. doi: 10.1016/j.physleta.2006.01.107
  • G. Rezaei, B. Vaseghi, and M. Sadri, External electric field effect on the optical rectification coefficient of an exciton in a spherical parabolic quantum dot, Phys. B 406 (2011), pp. 4596–4599. doi: 10.1016/j.physb.2011.09.032
  • S. Baskoutas, A.F. Terzis, and E. Voutsinas, Binding Energy of Donor states in a quantum dot with parabolic confinement, J. Comput. Theor. Nanosci. 1 (2004), pp. 315–319. doi: 10.1166/jctn.2004.028
  • W. Xie, Nonlinear optical properties of a hydrogenic donor quantum dot, Phys. Lett. A 372 (2008), pp. 5498–5500. doi: 10.1016/j.physleta.2008.06.059
  • W. Xie, Optical properties of an off-center hydrogenic impurity in a spherical quantum dot with Gaussian potential, Superlattices Microstruct. 48 (2010), pp. 239–247. doi: 10.1016/j.spmi.2010.04.015
  • C.M. Duque, R.E. Acosta, A.L. Morales, M.E. Mora-Ramos, R.L. Restrepo, J.H. Ojeda, E. Kasapoglu, and C.A. Duque, Optical coefficients in a semiconductor quantum ring: Electric field and donor impurity effects, Opt. Mater. 60 (2016), pp. 148–158. doi: 10.1016/j.optmat.2016.07.024
  • W. Xie, Nonlinear optical properties of an off-center donor in a quantum dot under applied magnetic field, Solid State Commun. 151 (2011), pp. 545–549. doi: 10.1016/j.ssc.2011.01.013
  • W. Xie and S. Liang, Optical properties of a donor impurity in a two-dimensional quantum pseudodot, Phys. B 406 (2011), pp. 4657–4660. doi: 10.1016/j.physb.2011.09.053
  • E. Sadeghi, Electric field and impurity effects on optical property of a three-dimensional quantum dot: A combinational potential scheme, Superlattice Microst. 50 (2011), pp. 331–339. doi: 10.1016/j.spmi.2011.07.011
  • Yu. D. Sibirmovskii, I.S. Vasilevskii, A.N. Vinichenko, I.S. Eremin, D.M. Zhigunov, N.I. Kargin, O.S. Kolentsova, P.A. Martyuk, and M.N. Strikhanov, Photoluminescence of GaAs/AlGaAs quantum ring arrays, Semiconductors, 49 (2015), pp. 638–643 doi: 10.1134/S106378261505022X
  • Z. Barticevic, M. Pacheco, C.A. Duque, and L.E. Oliveira, Magnetoexciton transitions in GaAs-Ga1-xAlxAs quantum wells, J. Phys.: Condens. Matter 14 (2002), pp. 1021–1033.
  • Z. Barticevic, M. Pacheco, C.A. Duque, and L.E. Oliveira, A theoretical study of exciton energy levels in laterally coupled quantum dots, J. Phys.: Condens. Matter 21 (2009), pp. 405801 (8pp).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.