192
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of sub-surface hydrogen on intrinsic crack tip plasticity in aluminium

, &
Pages 2355-2375 | Received 07 Aug 2018, Accepted 17 May 2019, Published online: 09 Jun 2019

References

  • R.P. Gangloff, Hydrogen assisted cracking of high strength alloys, in Comprehensive Structural Integrity, I. Milne, R.O. Ritchie, and B. Karihaloo, eds., Elsevier Science New York, NY, 2003, pp. 31–101.
  • R.P. Gangloff, H-enhanced deformation and fracture in the crack tip process zone, in Materials Performance in Hydrogen Environments (Proceedings of the 2016 International Conference on fracture), B.P. Sommerday and P. Sofronis, eds., ASME, 2017, pp. 1–35.
  • G.M. Scamans, R. Alani and P.R. Swann, Pre-exposure embrittlement and stress corrosion failure in Al–Zn–Mg alloys, Corros. Sci. 16 (1976), pp. 443–459. doi: 10.1016/0010-938X(76)90065-2
  • A. Van Der Ven and G. Ceder, Impurity-induced Van Der Waals transition during decohesion. Phys. Rev. B 67 (2003), pp. 060101(R). doi: 10.1103/PhysRevB.67.060101
  • D.E. Jiang and E.A. Carter, First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals, Acta. Mater. 52 (2004), pp. 4801–4807. doi: 10.1016/j.actamat.2004.06.037
  • H. Birnbaum, I. Robertson, P. Sofronis and D. Teter, Mechanisms of Hydrogen Related Fracture-A review, in Proceedings of CDI'96, Th. Magnin ed., The Institute of Materials. 1997, p. 172.
  • I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross and K.E. Nygren, Hydrogen embrittlement understood, Met. Mater. Trans. A 46 (2015), p. 2323. doi: 10.1007/s11661-015-2836-1
  • I. Aubert, N. Saintier, J.M. Olive and F. Plessier, A methodology to obtain data at the slip-band scale from atomic force microscopy observations and crystal plasticity simulations., Acta Mater. 104 (2016), pp. 9–17. doi: 10.1016/j.actamat.2015.11.042
  • Y. Deng and A. Barnoush, Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens, Acta Mater. 142 (2018), pp. 236–247. doi: 10.1016/j.actamat.2017.09.057
  • S.P. Lynch, Mechanisms and kinetics of environmentally assisted cracking: current status, issues, and suggestions for further work, Metall. Mater. Trans. A 44 (2013), pp. 1209–1229. doi: 10.1007/s11661-012-1359-2
  • Y. Fukai and N. Okuma, Formation of superabundant vacancies in Pd hydride under high hydrogen pressures, Phys. Rev. Lett. 73 (1994), p. 1640. doi: 10.1103/PhysRevLett.73.1640
  • M. Nagumo, Hydrogen related failure of steels—a new aspect, Mater. Sci. Technol. 20 (2004), pp. 940–950. doi: 10.1179/026708304225019687
  • D.G. Xie, Z.J. Wang, J. Sun, J. Li, E. Ma and Z.W. Shan, In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface, Nat. Mater. 14 (2015), p. 899. doi: 10.1038/nmat4336
  • A. Tehranchi and W.A. Curtin, Atomistic study of hydrogen embrittlement of grain boundaries in nickel: II. decohesion, Model. Sim. Mat. Sci. Eng. 25 (2017), p. 075013.
  • B. Kuhr, D. Farkas and I.M. Robertson, Atomistic studies of hydrogen effects on grain boundary structure and deformation response in fcc Ni, Comput. Mater. Sci. 122 (2016), pp. 92–101. doi: 10.1016/j.commatsci.2016.05.014
  • D. Tanguy, Cohesive stress heterogeneities and the transition from intrinsic ductility to brittleness, Phys. Rev. B 96 (2017), p. 174115. doi: 10.1103/PhysRevB.96.174115
  • T. Miura, K. Fujii and K. Fukuya, Micro-mechanical investigation for effects of helium on grain boundary fracture of austenitic stainless steel, J. Nucl. Mater. 457 (2015), pp. 279–290. doi: 10.1016/j.jnucmat.2014.11.062
  • S. Li, Y. Li, Y.C. Lo, T. Neeraj, R. Srinivasan, X. Ding, J. Sun, L. Qi, P. Gumbsch and J. Li, The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in α-Fe, Int. J. Plasticity 74 (2015), pp. 175–191. doi: 10.1016/j.ijplas.2015.05.017
  • A. Tehranchi, X. Zhang, G. Lu and W.A. Curtin, Hydrogen—vacancy—dislocation interactions in α-Fe, Modelling Simul. Mater. Sci. Eng. 25 (2017), p. 025001.
  • J. Song and W.A. Curtin, Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system, Acta. Mater. 68 (2014), pp. 61–69. doi: 10.1016/j.actamat.2014.01.008
  • Y. Sun, Q. Peng and G. Lu, Quantum mechanical modeling of hydrogen assisted cracking in aluminum, Phys. Rev. B 88 (2013), p. 104109.
  • R.J. Zamora, A.K. Nair, R.G. Hennig and D.H. Warner, Ab initio prediction of environmental embrittlement at a crack tip in aluminum, Phys. Rev. B 86 (2012), p. 060101(R). doi: 10.1103/PhysRevB.86.060101
  • D.H. Warner, W.A. Curtin and S. Qu, Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals, Nat. Mater. 6 (2007), p. 876. doi: 10.1038/nmat2030
  • J.R. Rice, Dislocation nucleation from a crack tip: an analysis based on the peierls concept, J. Mech. Phys. Solids 40 (1992), pp. 239–271. doi: 10.1016/S0022-5096(05)80012-2
  • S.J. Zhou, A.E. Carlsson and R. Thomson, Dislocation nucleation and crack stability: Lattice Green's-function treatment of cracks in a model hexagonal lattice, Phys. Rev. B 47 (1993), pp. 7710–7719. doi: 10.1103/PhysRevB.47.7710
  • K. Gouriet and D. Tanguy, Dislocation emission from a crack under mixed mode loading studied by molecular statics, Philos. Mag. 92 (2012), pp. 1663–1679. doi: 10.1080/14786435.2012.657704
  • D. Tanguy, M. Razafindrazaka and D. Delafosse, Multiscale simulation of crack tip shielding by a dislocation, Acta Mater. 56 (2008), p. 2441. doi: 10.1016/j.actamat.2008.01.031
  • Y. Mishin, D. Farkas, M.J. Mehl and D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Phys. Rev. B 59 (1999), pp. 3393–3407. doi: 10.1103/PhysRevB.59.3393
  • D. Tanguy and T. Magnin, Atomic-scale simulation of intergranular segregation of H in Al–Mg: implications for H-induced damage, Philos. Mag. 83 (2003), pp. 3995–4009. doi: 10.1080/14786430310001613192
  • X.J. Shen, D. Tanguy and D. Connétable, Atomistic modelling of hydrogen segregation to the Σ9{221}[110] symmetric tilt grain boundary in al, Philosophical Magazine 94 (2014), pp. 2247–2261. doi: 10.1080/14786435.2014.910333
  • C. Wolverton, V. Ozolins and M. Asta, Hydrogen in aluminum: first-principles calculations of structure and thermodynamics, Phys. Rev. B 69 (2004), p. 144109. doi: 10.1103/PhysRevB.69.144109
  • D. Connétable, Y. Wang and D. Tanguy, Segregation of hydrogen to defects in nickel using first-principles calculations: the case of self-interstitials and cavities, J. Alloys Compd. 614 (2014), pp. 211–220. doi: 10.1016/j.jallcom.2014.05.094
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993), p. 558. doi: 10.1103/PhysRevB.47.558
  • G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994), p. 14251. doi: 10.1103/PhysRevB.49.14251
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), p. 11169. doi: 10.1103/PhysRevB.54.11169
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999), p. 1758. doi: 10.1103/PhysRevB.59.1758
  • H.J. Monkhorst and J.D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (1976), p. 5188. doi: 10.1103/PhysRevB.13.5188
  • J. Weertman and J.E. Hack, Stress intensity factors for crack tip shielding or anti-shielding by impurity atoms, Int. J. Fract. 30 (1986), pp. 295–299. doi: 10.1007/BF00019709
  • Y. Wang, D. Connétable and D. Tanguy, Site stability and pipe diffusion of hydrogen under localised shear in aluminium, Phil. Mag. 99 (2019), pp. 1184–1205. doi: 10.1080/14786435.2019.1576935
  • G. Lu, D. Orlikowski, I. Park, O. Politano and E. Kaxiras, Energetics of hydrogen impurities in aluminum and their effect on mechanical properties, Phys. Rev. B 65 (2002), p. 064102.
  • P. Andric, B. Yin and W.A. Curtin, Stress-dependence of generalized stacking fault energies, JMPS 122 (2019), pp. 262–279.
  • F. Apostol and Y. Mishin, Hydrogen effect on shearing and cleavage of Al: A first-principles study, Phys. Rev. B 84 (2011), p. 104103. doi: 10.1103/PhysRevB.84.104103
  • J. Nørskov and F. Besenbacher, Theory of hydrogen interactions with metals, J. Less-Common Metals 130 (1987), pp. 475–490. doi: 10.1016/0022-5088(87)90145-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.