338
Views
6
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

The first Brillouin zone of the hexagonal close-packed structure and study on the properties of vacancies and phonon dispersions by the improved ones of the modified analytic embedded atom method potentials for Ru, Sc, Ti, Y, and Zr

, , &
Pages 2604-2617 | Received 07 Sep 2018, Accepted 08 Mar 2019, Published online: 01 Jul 2019

References

  • M.S. Daw and M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50 (1983), pp. 1285–1288. doi: 10.1103/PhysRevLett.50.1285
  • M.S. Daw and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29 (1984), pp. 6443–6453. doi: 10.1103/PhysRevB.29.6443
  • R.A. Johnson, Analytic nearest-neighbor model for fcc metals. Phys. Rev. B 37 (1988), pp. 3924–3931. doi: 10.1103/PhysRevB.37.3924
  • D.J. Oh and R.A. Johnson, Simple embedded atom method model for fcc and hcp metals. J. Mater. Res. 3 (1988), pp. 471–478. doi: 10.1557/JMR.1988.0471
  • D.J. Oh and R.A. Johnson, Analytic embedded atom method model for bcc metals. J. Mater. Res. 4 (1989), pp. 1195–1201. doi: 10.1557/JMR.1989.1195
  • R.A. Johnson, Alloy models with the embedded-atom method. Phys. Rev. B 39 (1989), pp. 12554–12559. doi: 10.1103/PhysRevB.39.12554
  • M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46 (1992), pp. 2727–2742. doi: 10.1103/PhysRevB.46.2727
  • M.I. Baskes, Application of the embedded-atom method to covalent materials: A semiempirical potential for silicon. Phys. Rev. Lett. 59 (1987), pp. 2666–2669. doi: 10.1103/PhysRevLett.59.2666
  • B. Zhang, Y. Quyang, S. Liao and Z. Jin, An analytic MEAM model for all BCC transition metals. Physica B 262 (1999), pp. 218–225. doi: 10.1016/S0921-4526(98)01156-9
  • W. Hu, X. Shu and B. Zhang, Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials. Comput. Mater. Sci. 23 (2002), pp. 175–189. doi: 10.1016/S0927-0256(01)00238-5
  • W. Hu, B. Zhang, B. Huang, F. Gao and D.J. Bacon, Analytic modified embedded atom potentials for HCP metals. J. Phys.: Condens. Matter 13 (2001), pp. 1193–1213.
  • H. Jin, J. An and Y. Jong, EAM potentials for BCC, FCC and HCP metals with farther neighbor atoms. Appl. Phys. A 120 (2015), pp. 189–197. doi: 10.1007/s00339-015-9149-5
  • F. Willaime, Development of an N-body interatomic potential for hcp and bcc zirconium. Phys. Rev. B 43 (1991), pp. 11653–11665. doi: 10.1103/PhysRevB.43.11653
  • H. Jin, J. Pak and Y. Jong, Study on the properties of vacancies and phonon dispersions by the improved ones of the modified analytic embedded atom method potentials for Al, Ni, and Ir. Appl. Phys. A 123 (2017), 8 pp.
  • B. Zhang, W. Hu and X. Shu, Theory of Embedded Atom Method and its Application to Materials Science − Atomic Scale Materials Design Theory, Hunan University Publication Press, Changsha, 2003.
  • C. Jon, H. Jin and C. Hwang, Improvement of modified analytic embedded atom method potentials for noble metals and Cu. Radiat. Eff. Defects Solids 172 (2017), pp. 575–589. doi: 10.1080/10420150.2017.1365865
  • M.I. Baskes and R.A. Johnson, Modified embedded atom potentials for HCP metals. Modelling Simul. Mater. Sci. Eng. 2 (1994), pp. 147–163. doi: 10.1088/0965-0393/2/1/011
  • R.A. Johnson, Many-body effects on calculated defect properties in h.c.p. metals. Philos. Mag. A 63 (1991), pp. 865–872. doi: 10.1080/01418619108213920
  • G.J. Ackland, Theoretical study of titanium surfaces and defects with a new many-body potential. Philos. Mag. A 66 (1992), pp. 917–932. doi: 10.1080/01418619208247999
  • J.R. Cahoon and O.D. Sherby, The activation energy for lattice. Metall. Trans. A 23 (1992), pp. 2491–2500. doi: 10.1007/BF02658053
  • R.A. Johnson and J.R. Beeler, Interatomic Potentials and Crystalline Defects, The Metallurgical Society AIME, New York, 1981. p. 165.
  • C.M. Libanati and S.F. Dyment, Autodifusion de titanio alfa. Acta Metall. 11 (1963), pp. 1263–1268. doi: 10.1016/0001-6160(63)90115-9
  • V.N. Maskalets, E.A. Smimov, D.M. Skorov and G.B. Fedorov. Diffusion Data. 3 (1969), p. 35.
  • M. Fuse, Evaluation of self-interstitial properties in hcp zirconium using a computer simulation. J. Nucl. Mater. 136 (1985), pp. 250–257. doi: 10.1016/0022-3115(85)90012-1
  • D.J. Oh and R.A. Johnson, Relationship between ratio and point defect properties in HCP metals. J. Nucl. Mater. 169 (1989), pp. 5–8. doi: 10.1016/0022-3115(89)90514-X
  • S. Mrowec, Defects and Diffusion in Solids—An Introduction (Materials Science Monographs 5), Elsevier, New York, 1980. p. 396.
  • Y. Adda and J. Philibert, La Diffusion Dans les Solides, Vol. II, Presses Universitaires De France, Paris, 1966. p. 1132.
  • A.G. Mikhin, Y.N. Osetsky and V.G. Kapinos, On the anisotropic migration of point defects in h.c.p. zirconium. Philos. Mag. A 70 (1994), pp. 25–33. doi: 10.1080/01418619408242534
  • A.D. McClean and R.S. McClean, Roothaan–Hartree–Fock atomic wave functions Slater basis-set expansions for Z = 55–92. At. Data Nucl. Data Tables 26 (1981), pp. 197–381. doi: 10.1016/0092-640X(81)90012-7
  • C.-E. Hu, Z.-Y. Zeng, L. Zhang, X.-R. Chen and L.-C. Cai, Density functional study of the phase diagram and thermodynamic properties of Zr. Comput. Mater. Sci. 50 (2011), pp. 835–840. doi: 10.1016/j.commatsci.2010.10.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.