326
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Pressure effect on mechanical stability and ground state optoelectronic properties of Li2S2 produced by Lithium−Sulfur batteries discharge: GGA-PBE, GLLB-SC and mBJ investigation

ORCID Icon, , , &
Pages 2789-2817 | Received 28 Jan 2019, Accepted 10 Jul 2019, Published online: 20 Jul 2019

References

  • P.G. Bruce, S.A. Freunberger, L.J. Hardwick and J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater 11 (2012), pp. 19–29. doi: 10.1038/nmat3191
  • Z.W. Seh, Q. Zhang, W. Li, G. Zheng, H. Yao and Y. Cui, Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binde. Chem. Sci 4 (2013), pp. 3673–3677. doi: 10.1039/c3sc51476e
  • T.S. Bailey, L.N. Zakharov and M.D. Pluth, Understanding hydrogen sulfide storage: Probing conditions for sulfide release from hydrodisulfides. J. Am. Chem. Soc 136 (2014), pp. 10573–10576. doi: 10.1021/ja505371z
  • J.J. Chen, R.M. Yuan, J.M. Feng, Q. Zhang, J.X. Huang, G. Fu, M.S. Zheng, B. Ren and Q.F. Dong, Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li–S battery. Chem. Mater 27 (2015), pp. 2048–2055. doi: 10.1021/cm5044667
  • S. Moon, Y.H. Jung, W.K. Jung, D.S. Jung, J.W. Choi and D.K. Kim, Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries. Adv. Mater 25 (2013), pp. 6547–6553. doi: 10.1002/adma.201303166
  • L.C.H. Gerber, P.D. Frischmann, F.Y. Fan, S.E. Doris, X. Qu, A.M. Scheuermann, K. Persson, Y.M. Chiang and B.A. Helms, Three-dimensional growth of Li2S in lithium–sulfur batteries promoted by a redox mediator. Nano Lett. 16 (2016), pp. 549–554. doi: 10.1021/acs.nanolett.5b04189
  • C. Wang, X. Wang, Y. Yang, A. Kushima, J. Chen, Y. Huang and J. Li, Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. Nano Lett. 15 (2015), pp. 1796–1802. doi: 10.1021/acs.nanolett.5b00112
  • Y. Pan, W. Guan and P. Mao, Insulator-to-metal transition of lithium–sulfur battery. RSC Adv. 7 (2017), pp. 44326–44332. doi: 10.1039/C7RA07621E
  • X. Ji, K.T. Lee and L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater 8 (2009), pp. 500–506. doi: 10.1038/nmat2460
  • Y.V. Mikhaylik and J.R. Akridge, Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc 151 (2004), pp. A1969–A1976. doi: 10.1149/1.1806394
  • Y. Pan and W.M. Guan, Prediction of new phase and electrochemical properties of Li2S2 for the application of Li-S batteries. Inorg. Chem 57 (2018), pp. 6617–6623. doi: 10.1021/acs.inorgchem.8b00747
  • Z. Feng, C. Kim, A. Vijhi, M. Armand, K.H. Bevan and K. Zaghib, Unravelling the role of Li2S2 in lithium–sulfur batteries: A first principles study of its energetic and electronic properties. J. Power Sources 272 (2014), pp. 518–521. doi: 10.1016/j.jpowsour.2014.07.078
  • H. Park, H.S. Koh and D.J. Siegel, First-principles study of redox end members in lithium–sulfur batteries. J. Phys. Chem. C 119 (2015), pp. 4675–4683. doi: 10.1021/jp513023v
  • P.P. Azar, T.D. Kühne and P. Kaghazchi, Evidence for the existence of Li2S2 clusters in lithium–sulfur batteries: Ab initio Raman spectroscopy simulation. Phys. Chem. Chem. Phys 17 (2015), pp. 22009. doi: 10.1039/C5CP02781K
  • Q. Liu, D. Mu, B. Wu, L. Wang, L. Gaia and F. Wuab, Insight on lithium polysulfide intermediates in a Li/S battery by density functional theory. RSC Adv. 7 (2017), pp. 33373. doi: 10.1039/C7RA04673A
  • J. Kao, Li2S2 and Li2S: an ab initio study. J. Mol. Struct 56 (1979), pp. 147–152. doi: 10.1016/0022-2860(79)80147-7
  • N.D. Lepley and N.A.W. Holzwarth, Computer modeling of crystalline electrolytes: Lithium thiophosphates and phosphates. J. Electrochem. Soc 159 (2012), pp. A538–A547. doi: 10.1149/2.jes113225
  • Z. Liu, P.B. Balbuena and P.P. Mukherjee, Revealing charge transport mechanisms in Li2S2 for Li-sulfur batteries. J. Phys. Chem. Lett 8 (2017), pp. 1324–1330. doi: 10.1021/acs.jpclett.6b03063
  • G. Yang, S. Shi, J. Yang and Y. Ma, Insight into the role of Li2S2 in Li–S batteries: A first-principles study. J. Mater. Chem. A 3 (2015), pp. 8865–8869. doi: 10.1039/C5TA00499C
  • Y. Liu, P. He and H. Zhou, Rechargeable solid-state Li–Air and Li–S batteries: Materials, construction, and challenges. Adv. Energy Mater. 8 (2018), pp. 1701602. doi: 10.1002/aenm.201701602
  • A. Fotouhi, D.J. Auger, L. O’Neill, T. Cleaver and S. Walus, Lithium-sulfur battery technology readiness and applications—A review. Energies 10 (2017), pp. 1937. doi: 10.3390/en10121937
  • X. Ji and L.F. Nazar, Advances in Li–S batteries. J. Mater. Chem 20 (2010), pp. 9821–9826. doi: 10.1039/b925751a
  • J. Liang, Z.H. Sun, F. Lin and H.M. Cheng, Carbon materials for Li–S batteries: Functional evolution and performance improvement. Energy Storage Mater 2 (2016), pp. 76–106. doi: 10.1016/j.ensm.2015.09.007
  • J. Zheng, M. Gu, C. Wang, P. Zuo, P.K. Koech, J.G. Zhang, J. Liu and J. Xiao, Controlled nucleation and growth process of Li2S2/Li2S in lithium-sulfur batteries. J. Electrochem. Soc 160 (2013), pp. A1992–A1996. doi: 10.1149/2.032311jes
  • M. Helen, M.A. Reddy, T. Diemant, U.G. Schindler, R.J. Behm, U. Kaiser and M. Fichtner, Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries. Sci. Rep 5 (2015), pp. 12146. doi: 10.1038/srep12146
  • L. Hu, C. Dai, J.M. Lim, Y. Chen, X. Lian, M. Wang, Y. Li, P. Xiao, G. Henkelman and M. Xu, A highly efficient double-hierarchical sulfur host for advanced lithium-sulfur batteries. Chem. Sci 9 (2018), pp. 666. doi: 10.1039/C7SC03960C
  • K. Yoo, M.K. Song, E.J. Cairns and P. Dutta, Numerical and experimental investigation of performance characteristics of Lithium/sulfur cells. Electrochim. Acta 213 (2016), pp. 174–185. doi: 10.1016/j.electacta.2016.07.110
  • X. Li, H. Li, J. Chen, X. Cai, H. Wang, Z. Lao, B. Sun, L. Tao and Y. Chen, Pressure induced structural phase of lithium disulfide with a close to intermediate product character of lithium-sulfur battery. J. Alloys Compd 778 (2019), pp. 588–592. doi: 10.1016/j.jallcom.2018.11.176
  • G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt and L. Nordström, Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64 (2001), pp. 195134. doi: 10.1103/PhysRevB.64.195134
  • K. Schwarz, P. Blaha and G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun 147 (2002), pp. 71. doi: 10.1016/S0010-4655(02)00206-0
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran and L.D. Marks, WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties., Karlheinz Schwarz, Techn. Universität Wien, Austria, 2018. ISBN 3-9501031-1-2.
  • P. Blaha, K. Schwarz, P. Sorantin and S.K. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun 59 (1990), pp. 399. doi: 10.1016/0010-4655(90)90187-6
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), pp. 3865. doi: 10.1103/PhysRevLett.77.3865
  • M. Dion, H. Rydberg, E. Schröder, D.C. Langreth and B.I. Lundqvist, Van der Waals density functional for general geometries. Phys. Rev. Lett 92 (2004), pp. 246401. doi: 10.1103/PhysRevLett.92.246401
  • J. Klimeš, D.R. Bowler and A. Michaelides, Chemical accuracy for the van der Waals density functional. J. Phys.: Cond. Matt 22 (2010), pp. 022201.
  • J. Klimeš, D.R. Bowler and A. Michaelides, Van der Waals density functionals applied to solids. Phys. Rev. B 83 (2011), pp. 195131. doi: 10.1103/PhysRevB.83.195131
  • F. Tran, J. Stelzl, D. Koller, T. Ruh and P. Blaha, Simple way to apply nonlocal Van der Waals functionals within all-electron methods. Phys. Rev. B 96 (2017), pp. 054103. doi: 10.1103/PhysRevB.96.054103
  • S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem 27 (2006), pp. 1787–1799. doi: 10.1002/jcc.20495
  • S. Grimme, J. Antony, S. Ehrlich and S. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys 132 (2010), pp. 154104. doi: 10.1063/1.3382344
  • S. Grimme, S. Ehrlich and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32 (2011), pp. 1456. doi: 10.1002/jcc.21759
  • P. Blochl, O. Jepsen and O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49 (1994), pp. 16223. doi: 10.1103/PhysRevB.49.16223
  • F.D. Murnaghan, The compressibility of media under extreme pressures. Prot. Natl. Acad. Sci. USA. 30 (1944), pp. 244. doi: 10.1073/pnas.30.9.244
  • M.J. Mehl, Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds. Phys. Rev. B 47 (1993), pp. 2493. doi: 10.1103/PhysRevB.47.2493
  • A.H. Reshak and M. Jamal, DFT calculation for elastic constants of tetragonal structure of crystalline solids with WIEN2k code: A new package (Tetra-elastic). Int. J. Electrochem. Sci 8 (2013), pp. 12252–12263.
  • M. Jamal, M. Bilal, I. Ahmad and S. Jalali-Asadabadi, IRelast package. J. Alloys Compd 735 (2018), pp. 569–579. doi: 10.1016/j.jallcom.2017.10.139
  • D. Kerroum, H. Bouafia, B. Sahli, S. Hiadsi, B. Abidri, A. Bouaza and M.A. Timaoui, Pressure effect on mechanical stability and optoelectronic behavior of zinc-silicon diarsenide ZnSiAs2-chalcopyrite: DFT investigation. Optik. (Stuttg) 139 (2017), pp. 315–327. doi: 10.1016/j.ijleo.2017.04.005
  • G. VSin’ko and N.A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. J. Phys.: Condens. Matter 14 (2002), pp. 6989–7005.
  • D.C. Wallace, Thermodynamics of Cristals, Willey, New York, NY, 1972.
  • A. Muñoz and M. Fuentes-Cabrera, Theoretical Ab Initio Calculationsin Ordered-Vacancy Compounds at High Pressures, in Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds189Manjon Francisco Javier, Tiginyanu Ion, Ursaki Veaceslav, eds., Springer Series in Materials Science, 2014.
  • W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig, 1928.
  • I.R. Shein and A.L. Ivanovskii, Elastic properties of quaternary oxypnictides LaOFeAs and LaOFeP as basic phases for new 26–52 K superconducting materials from first principles. Scr. Mater 59 (2008), pp. 1099. doi: 10.1016/j.scriptamat.2008.07.028
  • A. Reuss, Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. Angew. Math. Mech 9 (1929), pp. 49–58.
  • R. Hill, The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. London A 65 (1952), pp. 349. doi: 10.1088/0370-1298/65/5/307
  • S. Sharma, A.S. Verma, R. Bhandari and V.K. Jindal, Ab initio studies of structural, elastic and thermal properties of copper indium dichalcogenides (CuInX2: X=S, Se, Te). Comp. Mater. Sci 86 (2014), pp. 108–117. doi: 10.1016/j.commatsci.2014.01.021
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett 101 (2008), pp. 055504. doi: 10.1103/PhysRevLett.101.055504
  • S.F. Pugh, XCII, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philo. Mag 45 (1954), pp. 823–843. doi: 10.1080/14786440808520496
  • J.F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, 1985.
  • P. Dufek, P. Blaha and K. Schwarz, Applications of Engel and Vosko’s generalized gradient approximation in solids. Phys. Rev. B 50 (1994), pp. 7279. doi: 10.1103/PhysRevB.50.7279
  • E. Engel and S.H. Vosko, Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys. Rev. B 47 (1993), pp. 13164. doi: 10.1103/PhysRevB.47.13164
  • S. Fahy, K.J. Chang, S.G. Louis and M.L. Cohen, Pressure coefficients of band gaps of diamond. Phys. Rev. B 35 (1987), pp. 5856. doi: 10.1103/PhysRevB.35.5856
  • F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett 102 (2009), pp. 226401. doi: 10.1103/PhysRevLett.102.226401
  • F. Tran, S. Ehsan and P. Blaha, Assessment of the GLLB-SC potential for solid-state properties and attempts for improvement. Phys. Rev. Materials 2 (2018), pp. 023802. doi: 10.1103/PhysRevMaterials.2.023802
  • H. Bouafia, S. Hiadsi, B. Abidri, A. Akriche, L. Ghalouci and B. Sahli, Structural, elastic, electronic and thermodynamic properties of KTaO3 and NaTaO3: Ab initio investigations, comp. Mater. Sci 75 (2013), pp. 1–8.
  • L. Pauling, The Nature of Chemical Bond: An Introduction to Modern Structural Chemistry, Cornell Univ. Press, Ithaca, 1960.
  • A. Dorbane, H. Bouafia, B. Sahli, B. Djebour, A. Bouaza, S. Hiadsi and B. Abidri, Magnetic ground state and pressure effect study on elasticity, electronic and magnetic properties of KUO3: DFT + U, GLLB-SC, mBJ and QTAIM investigations. Solid State Sci. 90 (2019), pp. 56–67. doi: 10.1016/j.solidstatesciences.2019.02.001
  • M.A. Timaoui, H. Bouafia, B. Sahli, S. Hiadsi, B. Abidri, A. Bouaza, A. Akriche and D. Kerroum, FP-(L)APW + lo study of mechanical stability and electronic behavior of CoGe in B20 structure. Mater. Sci-Poland 35(3) (2017), pp. 548–559. doi: 10.1515/msp-2017-0051
  • N.V. Smith, Photoelectron energy spectra and the band structures of the noble metals. Phys. Rev. B 3 (1971), pp. 1862. doi: 10.1103/PhysRevB.3.1862
  • H. Ehrenreich and H.R. Philips, Optical properties of Ag and Cu. Phys. Rev 128 (1962), pp. 1622. doi: 10.1103/PhysRev.128.1622
  • F. Wooten, Optical Properties of Solids, Academic press, New york, NY, 1972.
  • S. Saha, T.P. Sinha and A.A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys. Rev. B 62 (2000), pp. 8828. doi: 10.1103/PhysRevB.62.8828

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.