168
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Reaction/crystallization kinetics studied via in situ XRD: experimental conditions versus methods of kinetic analysis

Pages 2941-2956 | Received 04 Mar 2019, Accepted 16 Jul 2019, Published online: 31 Jul 2019

References

  • D.D.L. Chung, P.W. DeHaven, H. Arnold, and D. Ghosh, X-ray Diffraction at Elevated Temperatures: A Method for In Situ Process Analysis, Wiley, 1993, ISBN: 978-0471187264.
  • B.E. Warren, X-Ray Diffraction – Dover Books on Physics, Dover Publications, 1990, ISBN: 978-0486663173.
  • C. Suryanarayana and M.G. Norton, X-Ray Diffraction: A Practical Approach – Artech House Telecommunications, Springer, 1998, ISBN: 978-0306457449.
  • Available at https://www.bruker.com/.
  • Available at https://www.anton-paar.com/.
  • J.D. Rodriguez-Blanco, S. Shaw, and L.G. Benning, The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, Nanoscale 3 (2011), pp. 265–271. doi: 10.1039/C0NR00589D
  • P. Norby, In-situ XRD as a tool to understanding zeolite crystallization, Curr. Opin. Colloid Interface Sci. 11 (2006), pp. 118–125. doi: 10.1016/j.cocis.2005.11.003
  • T.R. Jensen, T.K. Nielsen, Y. Filinchuk, J.E. Jorgensen, Y. Cerenius, E.M. Gray, and C.J. Webb, Versatile in situ powder X-ray diffraction cells for solid-gas investigations, J. Appl. Crystallogr. 43 (2010), pp. 1456–1463. doi: 10.1107/S0021889810038148
  • S. Adams, K. Hariharan, and J. Maier, Interface effect on the silver ion conductivity during the crystallization of AgI–Ag2O–V2O5 glasses, Solid State Ion. 75 (1995), pp. 193–201. doi: 10.1016/0167-2738(94)00219-I
  • A.T.W. Kempen, H. Nitsche, F. Sommer, and E.J. Mittemeijer, Crystallization kinetics of amorphous magnesium-rich magnesium-copper and magnesium-nickel alloys, Metal. Mater. Trans. A 33 (2002), pp. 1041–1050. doi: 10.1007/s11661-002-0205-3
  • L. Ding and Y. Zheng, Effect of template concentration and gel dilution on crystallization and particle size of zeolite beta in the absence of alkali cations, Micropor. Mesopor. Mat. 103 (2007), pp. 94–101. doi: 10.1016/j.micromeso.2007.01.034
  • N. Iqbal, N.H. van Dijk, S.E. Offerman, N. Geerlofs, M.P. Moret, L. Katgerman, and G.J. Kearley, In situ investigation of the crystallization kinetics and the mechanism of grain refinement in aluminum alloys, Mat. Sci. Eng. A 416 (2006), pp. 18–32. doi: 10.1016/j.msea.2005.10.045
  • S. Ueno, A. Minato, J. Yano, and K. Sato, Synchrotron radiation X-ray diffraction study of polymorphic crystallization of SOS from liquid phase, J. Cryst. Growth 198–199 (1999), pp. 1326–1329. doi: 10.1016/S0022-0248(98)01018-5
  • L. Bayés-García, T. Calvet, M.A. Cuevas-Diarte, S. Ueno, and K. Sato, In situ synchrotron radiation X-ray diffraction study of crystallization kinetics of polymorphs of 1,3-dioleoyl-2-palmitoyl glycerol (OPO), CrystEngComm 13 (2011), pp. 3592–3599. doi: 10.1039/c1ce05024a
  • J.R. Salasin and C. Rawn, In-situ kinetic investigation of calcium aluminate formation, Ceramics 1 (2018), pp. 175–197. doi: 10.3390/ceramics1010016
  • S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta 520 (2011), pp. 1–19. doi: 10.1016/j.tca.2011.03.034
  • S. Vyazovkin, K. Chrissafis, M.L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, and J.J. Sunol, ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations, Thermochim. Acta 590 (2014), pp. 1–23. doi: 10.1016/j.tca.2014.05.036
  • J. Šesták, Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis, Elsevier, Amsterdam, 1984.
  • J. Šesták, Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis, Elsevier, Amsterdam, 2005.
  • W.A. Johnson and K.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. Am. Inst. Min. (Metall) Eng. 135 (1939), pp. 416–442.
  • M. Avrami, Kinetics of phase change I – general theory, J. Chem. Phys. 7 (1939), pp. 1103–1112. doi: 10.1063/1.1750380
  • M. Avrami, Kinetics of phase change. II – transformation-time relations for random distribution of nuclei, J. Chem. Phys. 8 (1940), pp. 212–224. doi: 10.1063/1.1750631
  • M. Avrami, Granulation, phase change, and microstructure – kinetics of phase change III, J. Chem. Phys. 9 (1941), pp. 177–184. doi: 10.1063/1.1750872
  • B.V. Stark, I.L. Mirkin, and A.N. Romanovskii, Metals and thermal treatment, Mosk. Inst. Stal. 7 (1935), pp. 5–38.
  • A.N. Kolmogorov, On the statistical theory of metal crystallization, Izv. Akad. Nauk SSSR, Ser. Mater. 3 (1937), pp. 355–359.
  • J. Opfermann, Kinetic analysis using multivariate non-linear regression. I. Basic concepts, J. Therm. Anal. Calorim. 60 (2000), pp. 641–658. doi: 10.1023/A:1010167626551
  • G. Luciano and R. Svoboda, Evaluation of apparent activation energy in case of complex kinetic processes – part 1, J. Therm. Anal. Calorim. (Submitted).
  • H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. application to a phenolic plastic, J. Polym. Sci. C Polym. Sym. 6 (1964), pp. 183–195. doi: 10.1002/polc.5070060121
  • T. Akahira and T. Sunose, Method of determining activation deterioration constant of electrical insulating materials, Res. Report Chiba Inst. Technol. (Sci. Technol.) 16 (1971), pp. 22–31.
  • J. Malek, The kinetic analysis of non-isothermal data, Thermochim. Acta 200 (1992), pp. 257–269. doi: 10.1016/0040-6031(92)85118-F
  • R. Svoboda and J. Málek, Interpretation of crystallization kinetics results provided by DSC, Thermochim. Acta 526 (2011), pp. 237–251. doi: 10.1016/j.tca.2011.10.005
  • J.H. Flynn and L.A. Wall, General treatment of the thermogravimetry of polymers, J. Res. Nat. Bur. Stand. A 70 (1966), p. 4.
  • M.J. Starink, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods, Thermochim. Acta 404 (2003), pp. 163–176. doi: 10.1016/S0040-6031(03)00144-8
  • H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (1957), pp. 1702–1706. doi: 10.1021/ac60131a045
  • S. Vyazovkin and D. Dollimore, Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids, J. Chem. Inf. Comp. Sci. 36 (1996), pp. 42–45. doi: 10.1021/ci950062m
  • S. Vyazovkin, Modification of the integral isoconversional method to account for variation in the activation energy, J. Comput. Chem. 22 (2001), pp. 178–183. doi: 10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#
  • S. Vyazovkin, Is the Kissinger equation applicable to the processes that occur on cooling?, Macromol. Rapid. Commun. 23 (2002), pp. 771–775. doi: 10.1002/1521-3927(20020901)23:13<771::AID-MARC771>3.0.CO;2-G
  • P.E. Sánchez-Jiménez, J.M. Criado, and L.A. Pérez-Maqueda, Kissinger kinetic analysis of data obtained under different heating schedules, J. Therm. Anal. Calorim. 94 (2008), pp. 427–432. doi: 10.1007/s10973-008-9200-2
  • S. Vyazovkin, Isoconversional kinetics of polymers: the decade past, Macromol. Rapid. Commun. 38 (2017), p. 1600615. doi: 10.1002/marc.201600615
  • Y. Ma, B. Rheingans, F. Liu, and E.J. Mittemeijer, Isochronal crystallization kinetics of Fe40Ni40B20 amorphous alloy, J. Mater. Sci. 48 (2013), pp. 5596–5606. doi: 10.1007/s10853-013-7354-1
  • B. Rheingans, Y. Ma, F. Liu, and E.J. Mittemeijer, Crystallization kinetics of Fe40Ni40B20 amorphous alloy, J. Non-Cryst. Sol. 362 (2013), pp. 222–230. doi: 10.1016/j.jnoncrysol.2012.11.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.