3,077
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

High-resolution EBSD characterisation of friction stir welded nickel–copper alloy: effect of the initial microstructure on microstructural evolution and mechanical properties

, , & ORCID Icon
Pages 337-352 | Received 14 Mar 2019, Accepted 10 Oct 2019, Published online: 22 Oct 2019

References

  • K. Devendranath Ramkumar, V. Joshi, S. Pandit, M. Agrawal, O.S. Kumar, S. Periwal, M. Manikandan, and N. Arivazhagan, Investigations on the microstructure and mechanical properties of multi-pass pulsed current gas tungsten arc weldments of Monel 400 and Hastelloy C276. Mater. Des. 64 (2014), pp. 775–782. doi: 10.1016/j.matdes.2014.08.055
  • K. Devendranath Ramkumar, N. Arivazhagan, and S. Narayanan, Effect of filler materials on the performance of gas tungsten arc welded AISI 304 and Monel 400. Mater. Des. 40 (2012), pp. 70–79. doi: 10.1016/j.matdes.2012.03.024
  • R.S. Mishra and Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng.: R: Rep. 50(1–2) (2005), pp. 383–390. doi: 10.1016/j.mser.2005.07.001
  • R.K. Devendranath, N. Arivazhagan, S. Narayanan, M. Narayanan, A. Mondody, and R. Kashyap, Development of defect free Monel 400 welds for marine application. Adv. Mater. Res., Trans. Tech. Publ. 383-390 (2012), pp. 4693–4696.
  • V.A. Ventrella, J.R. Berretta, and W. de Rossi, Micro welding of Ni-based alloy Monel 400 thin foil by pulsed Nd: YAG laser. Phys. Procedia. 12 (2011), pp. 347–354. doi: 10.1016/j.phpro.2011.03.143
  • P.-D. Barsanescu, B. Leitoiu, V. Goanta, D. Cantemir, and G. Gherasim, Reduction of residual stresses induced by welding in Monel alloy, using parallel heat welding. Int. J. Acad. Res. 3(1) (2011), pp. 335–339.
  • Y. Javadi, Investigation of clamping effect on the welding residual stress and deformation of Monel plates by using the ultrasonic stress measurement and finite element method. J. Pressure Vessel Technol. 137(1) (2015), p. 011501. doi: 10.1115/1.4027514
  • Y.S. Yegaie, A. Kermanpur, and M. Shamanian, Numerical simulation and experimental investigation of temperature and residual stresses in GTAW with a heat sink process of Monel 400 plates. J. Mater. Process. Technol. 210(13) (2010), pp. 1690–1701. doi: 10.1016/j.jmatprotec.2010.05.017
  • G. Çam, Friction stir welded structural materials: beyond Al-alloys. Int. Mater. Rev. 56(1) (2011), pp. 1–48. doi: 10.1179/095066010X12777205875750
  • H.-H. Cho, S.-T. Hong, J.-H. Roh, H.-S. Choi, S.H. Kang, R.J. Steel, and H.N. Han, Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel. Acta Mater. 61(7) (2013), pp. 2649–2661. doi: 10.1016/j.actamat.2013.01.045
  • S. Mironov, T. Onuma, Y.S. Sato, and H. Kokawa, Microstructure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater. 100 (2015), pp. 301–312. doi: 10.1016/j.actamat.2015.08.066
  • A. Heidarzadeh, K. Kazemi-Choobi, H. Hanifian, and P. Asadi, 3 – Microstructural evolution, in Advances in Friction-Stir Welding and Processing, M.K.B. Givi and P. Asadi, eds., Woodhead Publishing, Cambridge, 2014. pp. 65–140.
  • A.L. Etter, T. Baudin, N. Fredj, and R. Penelle, Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds. Mater. Sci. Eng.: A. 445–446 (2007), pp. 94–99. doi: 10.1016/j.msea.2006.09.036
  • M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49(19) (2001), pp. 3899–3918. doi: 10.1016/S1359-6454(01)00295-6
  • S. Mironov, Y.S. Sato, and H. Kokawa, Development of grain structure during friction stir welding of pure titanium. Acta Mater. 57(15) (2009), pp. 4519–4528. doi: 10.1016/j.actamat.2009.06.020
  • J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater. 51(3) (2003), pp. 713–729. doi: 10.1016/S1359-6454(02)00449-4
  • U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, and C.W. Lee, Grain structure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater. 57(18) (2009), pp. 5406–5418. doi: 10.1016/j.actamat.2009.07.041
  • J. Jeon, S. Mironov, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, Friction stir spot welding of single-crystal austenitic stainless steel. Acta Mater. 59(20) (2011), pp. 7439–7449. doi: 10.1016/j.actamat.2011.09.013
  • V. Randle and O. Engler, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, CRC Press, Florida, 2014.
  • H. Khodaverdizadeh, A. Mahmoudi, A. Heidarzadeh, and E. Nazari, Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Mater. Des. 35 (2012), pp. 330–334. doi: 10.1016/j.matdes.2011.09.058
  • Y.Z. Tian, S. Gao, L.J. Zhao, S. Lu, R. Pippan, Z.F. Zhang, and N. Tsuji, Remarkable transitions of yield behavior and Lüders deformation in pure Cu by changing grain sizes. Scr. Mater. 142 (2018), pp. 88–91. doi: 10.1016/j.scriptamat.2017.08.034
  • T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr. Mater. 58(5) (2008), pp. 349–354. doi: 10.1016/j.scriptamat.2007.09.064
  • F.J. Humphreys and M. Hatherly, Chapter 13 – Hot deformation and dynamic restoration, in Recrystallization and Related Annealing Phenomena, 2nd ed., F.J.H. Hatherly, ed., Elsevier, Oxford, 2004, pp. 415–V.
  • T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60 (2014), pp. 130–207. doi: 10.1016/j.pmatsci.2013.09.002
  • F.J. Humphreys and M. Hatherly, Chapter 2 – The deformed state, in Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004. pp. 11–II.
  • F.J. Humphreys and M. Hatherly, Chapter 7 – Recrystallization of single-phase alloys, in Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004. pp. 215–IV.
  • R.W. Fonda, J.F. Bingert, and K.J. Colligan, Development of grain structure during friction stir welding. Scr. Mater. 51(3) (2004), pp. 243–248. doi: 10.1016/j.scriptamat.2004.04.017
  • R.W. Fonda, K.E. Knipling and D.J. Rowenhorst, EBSD analysis of friction stir weld textures. JOM 66(1) (2014), pp. 149–155. doi: 10.1007/s11837-013-0802-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.