391
Views
15
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

GeI2 monolayer: a model thermoelectric material from 300 to 600 K

, , &
Pages 782-796 | Received 22 Aug 2019, Accepted 26 Nov 2019, Published online: 08 Dec 2019

References

  • C.B. Vining, An inconvenient truth about thermoelectrics. Nat. Mater. 8 (2009), pp. 83–85. doi: 10.1038/nmat2361
  • A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard Iii, and J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451 (2008), pp. 168–171. doi: 10.1038/nature06458
  • T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science 297 (2002), pp. 2229–2232. doi: 10.1126/science.1072886
  • J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321 (2008), pp. 554–557. doi: 10.1126/science.1159725
  • L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321 (2008), pp. 1457–1461. doi: 10.1126/science.1158899
  • G.J. Snyder, Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 84 (2004), pp. 2436–2438. doi: 10.1063/1.1689396
  • C. Chang, G. Tan, J. He, M.G. Kanatzidis, and L.-D. Zhao, The thermoelectric properties of SnSe continue to surprise: Extraordinary electron and phonon transport. Chem. Mater. 30 (2018), pp. 7355–7367. doi: 10.1021/acs.chemmater.8b03732
  • F.J. DiSalvo, Thermoelectric cooling and power generation. Science 285 (1999), pp. 703–706. doi: 10.1126/science.285.5428.703
  • W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350 (2015), pp. 944–948. doi: 10.1126/science.aad1015
  • A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345 (2014), pp. 295–298. doi: 10.1126/science.1254763
  • X. Li, M. Tschumi, H. Han, S.S. Babkair, R.A. Alzubaydi, A.A. Ansari, S.S. Habib, M.K. Nazeeruddin, S.M. Zakeeruddin, and M. Grätzel, Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol. 3 (2015), pp. 551–555. doi: 10.1002/ente.201500045
  • D.B. Mitzi, Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 8 (1996), pp. 791–800. doi: 10.1021/cm9505097
  • C.C. Stoumpos, L. Frazer, D.J. Clark, Y.S. Kim, S.H. Rhim, A.J. Freeman, J.B. Ketterson, J.I. Jang, and M.G. Kanatzidis, Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137 (2015), pp. 6804–6819. doi: 10.1021/jacs.5b01025
  • P. Cheng, T. Wu, J. Zhang, Y. Li, J. Liu, L. Jiang, X. Mao, R.-F. Lu, W.-Q. Deng, and K. Han, (C6H5C2H4NH3)2GeI4: A layered two-dimensional perovskite with potential for photovoltaic applications. J. Phys. Chem. Lett. 8 (2017), pp. 4402–4406. doi: 10.1021/acs.jpclett.7b01985
  • X. Lu, B.A. Korgel, and K.P. Johnston, High yield of germanium nanocrystals synthesized from germanium diiodide in solution. Chem. Mater. 17 (2005), pp. 6479–6485. doi: 10.1021/cm0515956
  • J. Zhang, H.J. Liu, L. Cheng, J. Wei, J.H. Liang, D.D. Fan, J. Shi, X.F. Tang, and Q.J. Zhang, Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 4 (2015), pp. 6452. doi: 10.1038/srep06452
  • L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508 (2014), pp. 373. doi: 10.1038/nature13184
  • Y. Zhou and L.-D. Zhao, Promising thermoelectric bulk materials with 2D structures. Adv. Mater. 29 (2017), pp. 1702676. doi: 10.1002/adma.201702676
  • B. Peng, H. Mei, H. Zhang, H. Shao, K. Xu, G. Ni, Q. Jin, C.M. Soukoulis, and H. Zhu, High thermoelectric efficiency in monolayer PbI2 from 300 K to 900 K. Inorg. Chem. Front. 6 (2019), pp. 920–928. doi: 10.1039/C8QI01297K
  • R.C. Newman, A review of the growth and structure of thin films of germanium and silicon. Microelectron. Reliab. 3 (1964), pp. 121–138. doi: 10.1016/0026-2714(64)90246-X
  • A. Avilov and R. Imamov, Electron-diffraction study of germanium diiodide. Sov. Phys. Crystallogr. 13 (1968), pp. 52–55.
  • E. Urgiles, P. Melo, and C.C. Coleman, Vapor reaction growth of single crystal GeI2. J. Cryst. Growth 165 (1996), pp. 245–249. doi: 10.1016/0022-0248(96)00193-5
  • D.T. Restrepo, K.E. Lynch, K. Giesler, S.M. Kuebler, and R.G. Blair, Low-temperature (210°C) deposition of crystalline germanium via in situ disproportionation of GeI2. Mater. Res. Bull. 47 (2012), pp. 3484–3488. doi: 10.1016/j.materresbull.2012.06.072
  • R. Wu, K. Zhou, C.Y. Yue, J. Wei, and Y. Pan, Recent progress in synthesis, properties and potential applications of SiC nanomaterials, Prog. Mater. Sci. 72 (2015), pp. 1–60. doi: 10.1016/j.pmatsci.2015.01.003
  • X. Qin, Y. Liu, X. Li, J. Xu, B. Chi, D. Zhai, and X. Zhao, Origin of dirac cones in SiC silagraphene: A combined density functional and tight-binding study. J. Phys. Chem. Lett. 6 (2015), pp. 1333–1339. doi: 10.1021/acs.jpclett.5b00365
  • C.-S. Liu, X.-L. Yang, J. Liu, and X.-J. Ye, Exfoliated monolayer GeI2: theoretical prediction of a wide-band gap semiconductor with tunable half-metallic ferromagnetism. J. Phys. Chem. C 122 (2018), pp. 22137–22142. doi: 10.1021/acs.jpcc.8b05529
  • R.G. Parr, Density Functional Theory of Atoms and Molecules, Springer Netherlands, Dordrecht, 1980, pp. 5–15.
  • R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55 (1985), pp. 2471–2474. doi: 10.1103/PhysRevLett.55.2471
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47 (1993), pp. 558–561. doi: 10.1103/PhysRevB.47.558
  • G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Conden. Matter 6 (1994), pp. 8245. doi: 10.1088/0953-8984/6/40/015
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54 (1996), pp. 11169–11186. doi: 10.1103/PhysRevB.54.11169
  • P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50 (1994), pp. 17953–17979. doi: 10.1103/PhysRevB.50.17953
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • B. Hammer, L.B. Hansen, and J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59 (1999), pp. 7413–7421. doi: 10.1103/PhysRevB.59.7413
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976), pp. 5188–5192. doi: 10.1103/PhysRevB.13.5188
  • J. Heyd, G.E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118 (2003), pp. 8207–8215. doi: 10.1063/1.1564060
  • L.J. Sham and M. Schlüter, Density-functional theory of the energy gap. Phys. Rev. Lett. 51 (1983), pp. 1888–1891. doi: 10.1103/PhysRevLett.51.1888
  • L.J. Sham and M. Schlüter, Density-functional theory of the band gap. Phys. Rev. B 32 (1985), pp. 3883–3889. doi: 10.1103/PhysRevB.32.3883
  • P. Mori-Sánchez, A.J. Cohen, and W. Yang, Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys. Rev. Lett. 100 (2008), pp. 146401. doi: 10.1103/PhysRevLett.100.146401
  • A.J. Cohen, P. Mori-Sánchez, and W. Yang, Insights into current limitations of density functional theory. Science 321 (2008), pp. 792–794. doi: 10.1126/science.1158722
  • S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73 (2001), pp. 515–562. doi: 10.1103/RevModPhys.73.515
  • P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43 (1991), pp. 7231–7242. doi: 10.1103/PhysRevB.43.7231
  • X. Gonze and C. Lee, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55 (1997), pp. 10355–10368. doi: 10.1103/PhysRevB.55.10355
  • A. Togo and I. Tanaka, First principles phonon calculations in materials science. Scripta Mater. 108 (2015), pp. 1–5. doi: 10.1016/j.scriptamat.2015.07.021
  • D.A. Broido, M. Malorny, G. Birner, N. Mingo, and D.A. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91 (2007), pp. 231922. doi: 10.1063/1.2822891
  • W. Li, L. Lindsay, D.A. Broido, D.A. Stewart, and N. Mingo, Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles. Phys. Rev. B 86 (2012), pp. 174307. doi: 10.1103/PhysRevB.86.174307
  • W. Li, J. Carrete, N. A. Katcho, and N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons, Comput. Phys. Commun. 185 (2014), pp. 1747-1758. doi: 10.1016/j.cpc.2014.02.015
  • G.K.H. Madsen and D.J. Singh, Boltztrap. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175 (2006), pp. 67–71. doi: 10.1016/j.cpc.2006.03.007
  • S. Takagi, A. Toriumi, M. Iwase, and H. Tango, On the universality of inversion layer mobility in Si MOSFET's: part I-effects of substrate impurity concentration. IEEE. T. Electron Dev. 41 (1994), pp. 2357–2362. doi: 10.1109/16.337449
  • S. Takagi, A. Toriumi, M. Iwase, and H. Tango, On the universality of inversion layer mobility in Si MOSFET's: part II-effects of surface orientation. IEEE. T. Electron Dev. 41 (1994), pp. 2363–2368. doi: 10.1109/16.337450
  • W. Zhang, Z. Huang, W. Zhang, and Y. Li, Two-dimensional semiconductors with possible high room temperature mobility. Nano. Res. 7 (2014), pp. 1731–1737. doi: 10.1007/s12274-014-0532-x
  • F. Lu, W. Wang, X. Luo, X. Xie, Y. Cheng, H. Dong, H. Liu, and W.-H. Wang, A class of monolayer metal halogenides MX2: electronic structures and band alignments. Appl. Phys. Lett. 108 (2016), pp. 132104. doi: 10.1063/1.4945366
  • N. Kaminski, State of the art and the future of wide band-gap devices, 2009.
  • Z. Cui, X. Wang, E. Li, Y. Ding, C. Sun, and M. Sun, Nanoscale Res. Lett. 13 (2018), pp. 207.
  • W.-L. Tao, Y. Mu, C.-E. Hu, Y. Cheng, and G.-F. Ji, Phil. Mag. 99 (2019), pp. 1025. doi: 10.1080/14786435.2019.1572927
  • L. Zhu, T. Zhang, Z. Sun, J. Li, G. Chen, and S.A. Yang, Thermal conductivity of biaxial-strained MoS2: sensitive strain dependence and size dependent reduction rate. Nanotechnology 26 (2015), pp. 465707. doi: 10.1088/0957-4484/26/46/465707
  • G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, M. Hu, and G. Su, Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 17 (2015), pp. 4854–4858. doi: 10.1039/C4CP04858J
  • G. Ding, J. He, G.Y. Gao, and K. Yao, J. Appl. Phys. 124 (2018), pp. 165101.
  • G. Li, G. Ding, and G. Gao, Thermoelectric properties of SnSe2monolayer, J. Phys. Conden. Matter 29 (2017), pp. 015001. doi: 10.1088/0953-8984/29/1/015001
  • J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, and D.J. Singh, On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. Npj Comput. Mater. 2 (2016), pp. 15015. doi: 10.1038/npjcompumats.2015.15
  • W.G. Zeier, A. Zevalkink, Z.M. Gibbs, G. Hautier, M.G. Kanatzidis, and G.J. Snyder, Thinking like a chemist: intuition in thermoelectric materials. Angew. Chem. Int. Ed 55 (2016), pp. 6826–6841. doi: 10.1002/anie.201508381

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.