293
Views
14
CrossRef citations to date
0
Altmetric
Part A: Materials Science

An investigation of the stored energy and thermal stability in a Cu–Ni–Si alloy processed by high-pressure torsion

, , , , , , ORCID Icon, & ORCID Icon show all
Pages 688-712 | Received 15 Jun 2019, Accepted 06 Dec 2019, Published online: 20 Dec 2019

References

  • R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006), pp. 881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008), pp. 893–979. doi: 10.1016/j.pmatsci.2008.03.002
  • F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, and E.V. Pereloma, Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes, Acta Mater. 52 (2004), pp. 4819–4832. doi: 10.1016/j.actamat.2004.06.040
  • N. Lugo, N. Llorca, J.J. Suñol, and J.M. Cabrera, Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing, J. Mater. Sci. 45 (2010), pp. 2264–2273. doi: 10.1007/s10853-009-4139-7
  • A.Y. Khereddine, F. Hadj Larbi, H. Azzeddine, T. Baudin, F. Brisset, A.-L. Helbert, M.-H. Mathon, M. Kawasaki, D. Bradai, and T.G. Langdon, Microstructures and textures of a Cu–Ni–Si alloy processed by high-pressure torsion, J. Alloys Compd. 574 (2013), pp. 361–367. doi: 10.1016/j.jallcom.2013.05.051
  • F. Hadj Larbi, H. Azzeddine, T. Baudin, M.-H. Mathon, F. Brisset, A.-L. Helbert, M. Kawasaki, D. Bradai, and T.G. Langdon, Microstructure and texture evolution in a Cu–Ni–Si alloy processed by equal-channel angular pressing, J. Alloys Compd. 638 (2015), pp. 88–94. doi: 10.1016/j.jallcom.2015.03.062
  • K. Abib, J.A.M. Balanos, B. Alili, and D. Bradai, On the microstructure and texture of Cu-Cr-Zr alloy after severe plastic deformation by ECAP, Mater. Charact. 112 (2016), pp. 252–258. doi: 10.1016/j.matchar.2015.12.026
  • A.Y. Khereddine, F.H. Larbi, M. Kawasaki, T. Baudin, D. Bradai, and T.G. Langdon, An examination of microstructural evolution in a Cu–Ni–Si alloy processed by HPT and ECAP, Mater. Sci. Eng. A. 576 (2013), pp. 149–155. doi: 10.1016/j.msea.2013.04.004
  • M.Y. Alawadhi, S. Sabbaghianrad, Y. Huang, and T.G. Langdon, Direct influence of recovery behaviour on mechanical properties in oxygen-free copper processed using different SPD techniques: HPT and ECAP, J. Mater. Res. Technol. 6 (2017), pp. 369–377. doi: 10.1016/j.jmrt.2017.05.005
  • W.Q. Cao, C.F. Gu, E.V. Pereloma, and C.H.J. Davies, Stored energy, vacancies and thermal stability of ultra-fine grained copper, Mater. Sci. Eng. A. 492 (2008), pp. 74–79. doi: 10.1016/j.msea.2008.02.048
  • Y.L. Wang, R. Lapovok, J.T. Wang, Y.S. Qi, and Y. Estrin, Thermal behavior of copper processed by ECAP with and without back pressure, Mater. Sci. Eng. A. 628 (2015), pp. 21–29. doi: 10.1016/j.msea.2015.01.021
  • N. Gao, M.J. Starink, and T.G. Langdon, Using differential scanning calorimetry as an analytical tool for ultrafine grained metals processed by severe plastic deformation, Mater. Sci. Technol. 25 (2009), pp. 687–698. doi: 10.1179/174328409X408901
  • S.S. Hazra, A.A. Gazder, and E.V. Pereloma, Stored energy of a severely deformed interstitial free steel, Mater. Sci. Eng. A. 524 (2009), pp. 158–167. doi: 10.1016/j.msea.2009.06.033
  • E. Schafler, G. Steiner, E. Korznikova, M. Kerber, and M.J. Zehetbauer, Lattice defect investigation of ECAP-Cu by means of X-ray line profile analysis, calorimetry and electrical resistometry, Mater. Sci. Eng. A. 410-411 (2005), pp. 169–173. doi: 10.1016/j.msea.2005.08.070
  • A.L. Etter, T. Baudin, M.H. Mathon, W. Swiatnicki, and R. Penelle, Stored energy evolution in both phases of a duplex steel as a function of cold rolling reduction, Scr. Mater. 54 (2006), pp. 683–688. doi: 10.1016/j.scriptamat.2005.10.034
  • C. Fressengeas, B. Beausir, C. Kerisit, A.-L. Helbert, T. Baudin, F. Brisset, M.-H. Mathon, R. Besnard, and N. Bozzolo, On the evaluation of dislocation densities in pure tantalum from EBSD orientation data, Matér. Tech. 106 (2018), p. 604.
  • X. Molodova, G. Gottstein, M. Winning, and R.J. Hellmig, Thermal stability of ECAP processed pure copper, Mater. Sci. Eng. A. 460-461 (2007), pp. 204–213. doi: 10.1016/j.msea.2007.01.042
  • F. Hadj-Larbi, K. Abib, A.E.Y. Khereddine, B. Alili, M. Kawasaki, D. Bradai, and T.G. Langdon, DSC analysis of an ecapdeformed Cu-Ni-Si alloy, Proceedings 22 International Conference on Metallurgy and Materials (Metal'2013), Brno, Czech Republic, 2013.
  • K. Abib, F.H. Larbi, L. Rabahi, B. Alili, and D. Bradai, DSC Analysis of Commercial Cu–Cr–Zr Alloy Processed by Equal Channel Angular Pressing, Trans. Nonferr. Met. Soc. China. 25 (2015), pp. 838–843.
  • K. Abib, H. Azzeddine, K. Tirsatine, T. Baudin, A.-L. Helbert, F. Brisset, B. Alili, and D. Bradai, Thermal stability of Cu-Cr-Zr alloy processed by equal-channel angular pressing, Mater. Charact. 118 (2016), pp. 527–534. doi: 10.1016/j.matchar.2016.07.006
  • Y. Zhang, J.T. Wang, C. Cheng, and J. Liu, Stored energy and recrystallization temperature in high purity copper after equal channel angular pressing, J. Mater. Sci. 43 (2008), pp. 7326–7330. doi: 10.1007/s10853-008-2903-8
  • A.P. Zhilyaev, I. Shakhova, A. Belyakov, R. Kaibyshev, and T.G. Langdon, Effect of annealing on wear resistance and electroconductivity of copper processed by high-pressure torsion, J. Mater. Sci. 49 (2014), pp. 2270–2278. doi: 10.1007/s10853-013-7923-3
  • Z. Horita and T.G. Langdon, Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion, Mater. Sci. Eng. A. 410-411 (2005), pp. 422–425. doi: 10.1016/j.msea.2005.08.133
  • E. Schafler and M.B. Kerber, Microstructural investigation of the annealing behaviour of high-pressure torsion (HPT) deformed copper, Mater. Sci. Eng. A. 462 (2007), pp. 139–143. doi: 10.1016/j.msea.2005.11.085
  • A. Vorhauer, S. Scheriau, and R. Pippan, In-situ annealing of severe plastic-deformed OFHC copper, Metall. Mater. Trans. A. 39 (2008), pp. 908–918.
  • A.P. Zhilyaev, S.N. Sergeev, and T.G. Langdon, Electron backscatter diffraction (EBSD) microstructure evolution in HPT copper annealed at a low temperature, J. Mater. Res. Technol. 3 (2014), pp. 338–343. doi: 10.1016/j.jmrt.2014.06.008
  • H. Jiang, Y.T. Zhu, D.P. Butt, I.V. Alexandrov, and T.C. Lowe, Microstructural evolution, microhardness and thermal stability of HPT-processed Cu, Mater. Sci. Eng. A. 290 (2000), pp. 128–138. doi: 10.1016/S0921-5093(00)00919-9
  • J. Čížek, I. Procházka, M. Cieslar, R. Kužel, Z. Matěj, V. Cherkaska, R.K. Islamgaliev, and O. Kulyasova, Influence of ceramic nanoparticles on grain growth in ultra fine grained copper prepared by high pressure torsion, Phys. Status Solidi C. 4 (2007), pp. 3587–3590. doi: 10.1002/pssc.200675776
  • Y. Huang, S. Sabbaghianrad, A.I. Almazrouee, K.J. Al-Fadhalah, S.N. Alhajeri, and T.G. Langdon, The significance of self-annealing at room temperature in high purity copper processed by high-pressure torsion, Mater. Sci. Eng. A. 656 (2016), pp. 55–66. doi: 10.1016/j.msea.2016.01.027
  • Y. Huang, S. Sabbaghianrad, A.I. Almazrouee, K.J. Al-Fadhalah, S.N. Alhajeri, N.X. Zhang, and T.G. Langdon, Comparisons of self-annealing behaviour of HPT-processed high purity Cu and a Pb–Sn alloy, J. Mater. Res. Technol. 6 (2017), pp. 390–395. doi: 10.1016/j.jmrt.2017.07.002
  • A.I. Almazrouee, K.J. Al-Fadhalah, S.N. Alhajeri, Y. Huang, and T.G. Langdon, Effect of long-term storage on microstructure and microhardness stability in OFHC copper processed by high-pressure torsion, Adv. Eng. Mater. 21 (2019), p. 1801300. doi: 10.1002/adem.201801300
  • R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon, Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion, Mater. Sci. Eng. A. 528 (2011), pp. 8198–8204. doi: 10.1016/j.msea.2011.07.040
  • P.H.R. Pereira, R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon, An examination of the elastic distortions of anvils in high-pressure torsion, Mater. Sci. Eng. A. 631 (2015), pp. 201–208. doi: 10.1016/j.msea.2015.02.052
  • Y. Mikami, K. Oda, M. Kamaya, and M. Mochizuki, Effect of reference point selection on microscopic stress measurement using EBSD, Mater. Sci. Eng. A. 647 (2015), pp. 256–264. doi: 10.1016/j.msea.2015.09.004
  • J.-H. Cho, A.D. Rollett, and K.H. Oh, Determination of a mean orientation in electron backscatter diffraction measurements, Metall. Mater. Trans. A. 36 (2005), pp. 3427–3438.
  • R. Badji, T. Chauveau, and B. Bacroix, Texture, misorientation and mechanical anisotropy in a deformed dual phase stainless steel weld joint, Mater. Sci. Eng. A. 575 (2013), pp. 94–103. doi: 10.1016/j.msea.2013.03.018
  • Y. Ateba Betanda, A.-L. Helbert, F. Brisset, M.-H. Mathon, T. Waeckerlé, and T. Baudin, Measurement of stored energy in Fe–48%Ni alloys strongly cold-rolled using three approaches: Neutron diffraction, Dillamore and KAM approaches, Mater. Sci. Eng. A. 614 (2014), pp. 193–198. doi: 10.1016/j.msea.2014.07.037
  • Q. Liu, D. Juul Jensen, and N. Hansen, Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium, Acta Mater. 46 (1998), pp. 5819–5838. doi: 10.1016/S1359-6454(98)00229-8
  • Y. Takayama and J.A. Szpunar, Stored energy and Taylor factor relation in an Al-Mg-Mn alloy sheet worked by continuous cyclic bending, Mater. Trans. 45 (2004), pp. 2316–2325. doi: 10.2320/matertrans.45.2316
  • Y. Takayama, J.A. Szpunar, and H. Kato, Analysis of intragranular misorientation related to deformation in an Al-Mg-Mn alloy, Mater. Sci. Forum 495-497 (2005), pp. 1049–1054. doi: 10.4028/www.scientific.net/MSF.495-497.1049
  • S.I. Wright, M.M. Nowell, R. de Kloe, and L. Chan, Orientation precision of electron backscatter diffraction measurements near grain boundaries, Microsc. Microanal. 20 (2014), pp. 852–863. doi: 10.1017/S143192761400035X
  • C. Moussa, M. Bernacki, R. Besnard, and N. Bozzolo, About quantitative EBSD analysis of deformation and recovery substructures in pure Tantalum, IOP Conf. Ser.: Mater. Sci. Eng. 89 (2015), p. 012038.
  • G.I. Taylor, The mechanism of plastic deformation of crystals. part I.-Theoretical, Proc. R. Soc. Lond. A. 145 (1934), pp. 362–387.
  • H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (1957), pp. 1702–1706. doi: 10.1021/ac60131a045
  • P.G. Boswell, On the calculation of activation energies using a modified Kissinger method, J. Therm. Anal. 18 (1980), pp. 353–358. doi: 10.1007/BF02055820
  • H. Azzeddine, B. Mehdi, L. Hennet, D. Thiaudière, B. Alili, M. Kawasaki, D. Bradai, and T.G. Langdon, An in situ synchrotron X-ray diffraction study of precipitation kinetics in a severely deformed Cu–Ni–Si alloy, Mater. Sci. Eng. A. 597 (2014), pp. 288–294. doi: 10.1016/j.msea.2013.12.092
  • K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, and Z. Horita, Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion, Acta Mater. 69 (2014), pp. 68–77. doi: 10.1016/j.actamat.2014.01.036
  • M. Kawasaki, Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion, J. Mater. Sci. 49 (2014), pp. 18–34. doi: 10.1007/s10853-013-7687-9
  • Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon, Microstructural evolution and mechanical properties of a two-phase Cu–Ag alloy processed by high-pressure torsion to ultrahigh strains, Acta Mater. 59 (2011), pp. 2783–2796. doi: 10.1016/j.actamat.2011.01.017
  • J. Čížek, M. Janeček, O. Srba, R. Kužel, Z. Barnovská, I. Procházka, and S. Dobatkin, Evolution of defects in copper deformed by high-pressure torsion, Acta Mater. 59 (2011), pp. 2322–2329. doi: 10.1016/j.actamat.2010.12.028
  • R.W. Armstrong, Engineering science aspects of the Hall–Petch relation, Acta Mech. 225 (2014), pp. 1013–1028. doi: 10.1007/s00707-013-1048-2
  • W. Pantleon, Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction, Scr. Mater. 58 (2008), pp. 994–997. doi: 10.1016/j.scriptamat.2008.01.050
  • D.P. Field, C.C. Merriman, N. Allain-Bonasso, and F. Wagner, Quantification of dislocation structure heterogeneity in deformed polycrystals by EBSD, Modell. Simul. Mater. Sci. Eng. 20 (2012), p. 024007. doi: 10.1088/0965-0393/20/2/024007
  • J. Humphreys, G.S. Rohrer, and A. Rollett, Chapter 7 – recrystallization of single-phase alloys, in Recrystallization and Related Annealing Phenomena, 3rd ed., J. Humphreys, G.S. Rohrer and A. Rollett, eds., Elsevier, Oxford, 2017, pp. 245–304.
  • M.F. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag. A.: J. Theor. Exp. Appl. Phys. 21 (1970), pp. 399–424. doi: 10.1080/14786437008238426
  • J. Jiang, T.B. Britton, and A.J. Wilkinson, Evolution of dislocation density distributions in copper during tensile deformation, Acta Mater. 61 (2013), pp. 7227–7239. doi: 10.1016/j.actamat.2013.08.027
  • P.J. Konijnenberg, S. Zaefferer, and D. Raabe, Assessment of geometrically necessary dislocation levels derived by 3D EBSD, Acta Mater. 99 (2015), pp. 402–414. doi: 10.1016/j.actamat.2015.06.051
  • Y. Murata, I. Nakaya, and M. Morinaga, Assessment of strain energy by measuring dislocation density in copper and aluminium prepared by ECAP and ARB, Mater. Trans. 49 (2008), pp. 20–23. doi: 10.2320/matertrans.ME200707
  • D. Kuhlmann-Wilsdorf, and N. Hansen, Geometrically necessary, incidental and subgrain boundaries, Scr. Metall. Mater. 25 (1991), pp. 1557–1562. doi: 10.1016/0956-716X(91)90451-6
  • A. Belyakov, T. Sakai, H. Miura, and K. Tsuzaki, Grain refinement in copper under large strain deformation, Philos. Mag. A. 81 (2001), pp. 2629–2643. doi: 10.1080/01418610108216659
  • O. Renk, P. Ghosh, and R. Pippan, Generation of extreme grain aspect ratios in severely deformed tantalum at elevated temperatures, Scr. Mater. 137 (2017), pp. 60–63. doi: 10.1016/j.scriptamat.2017.04.024
  • K. Edalati, Y. Hashiguchi, P.H.R. Pereira, Z. Horita, and T.G. Langdon, Effect of temperature rise on microstructural evolution during high-pressure torsion, Mater. Sci. Eng. A. 714 (2018), pp. 167–171. doi: 10.1016/j.msea.2017.12.095
  • P.H.R. Pereira, R.B. Figueiredo, Y. Huang, P.R. Cetlin, and T.G. Langdon, Modeling the temperature rise in high-pressure torsion, Mater. Sci. Eng. A. 593 (2014), pp. 185–188. doi: 10.1016/j.msea.2013.11.015
  • K. Edalati, R. Miresmaeili, Z. Horita, H. Kanayama, and R. Pippan, Significance of temperature increase in processing by high-pressure torsion, Mater. Sci. Eng. A. 528 (2011), pp. 7301–7305. doi: 10.1016/j.msea.2011.06.031
  • Y.Z. Tian, X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon, Direct observations of microstructural evolution in a two-phase Cu–Ag alloy processed by high-pressure torsion, Scr. Mater. 63 (2010), pp. 65–68. doi: 10.1016/j.scriptamat.2010.03.014
  • C. Xu, Z. Horita, and T.G. Langdon, The evolution of homogeneity in processing by high-pressure torsion, Acta Mater. 55 (2007), pp. 203–212. doi: 10.1016/j.actamat.2006.07.029
  • A. Hanna, H. Azzeddine, R. Lachhab, T. Baudin, A.-L. Helbert, F. Brisset, Y. Huang, D. Bradai, and T.G. Langdon, Evaluating the textural and mechanical properties of an Mg-Dy alloy processed by high-pressure torsion, J. Alloys Compd. 778 (2019), pp. 61–71. doi: 10.1016/j.jallcom.2018.11.109
  • M.B. Bever, D.L. Holt, and A.L. Titchener, The stored energy of cold work, Prog. Mater. Sci. 17 (1973), pp. 5–177. doi: 10.1016/0079-6425(73)90001-7
  • T. Ungár, E. Schafler, P. Hanák, S. Bernstorff, and M. Zehetbauer, Vacancy production during plastic deformation in copper determined by in situ X-ray diffraction, Mater. Sci. Eng. A. 462 (2007), pp. 398–401. doi: 10.1016/j.msea.2006.03.156
  • T. Ungar, H. Mughrabi, D. Rönnpagel, and M. Wilkens, X-ray line-broadening study of the dislocation cell structure in deformed [001]-orientated copper single crystals, Acta Metall. 32 (1984), pp. 333–342. doi: 10.1016/0001-6160(84)90106-8
  • J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horita, and T.G. Langdon, The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys, Mater. Sci. Eng. A. 460-461 (2007), pp. 77–85. doi: 10.1016/j.msea.2007.01.001
  • D. Setman, E. Schafler, E. Korznikova, and M.J. Zehetbauer, The presence and nature of vacancy type defects in nanometals detained by severe plastic deformation, Mater. Sci. Eng. A. 493 (2008), pp. 116–122. doi: 10.1016/j.msea.2007.06.093
  • M. El-Tahawy, Y. Huang, T. Um, H. Choe, J.L. Lábár, T.G. Langdon, and J. Gubicza, Stored energy in ultrafine-grained 316L stainless steel processed by high-pressure torsion, J. Mater. Res. Technol. 6 (2017), pp. 339–347. doi: 10.1016/j.jmrt.2017.05.001
  • G. Kapoor, L. Péter, É. Fekete, J.L. Lábár, and J. Gubicza, Stored energy in nanocrystalline Ni-Mo films processed by electrodeposition, J. Alloys Compd. 796 (2019), pp. 307–313. doi: 10.1016/j.jallcom.2019.05.032
  • C.J. Meechan and R.R. Eggleston, Formation energies of vacancies in copper and gold, Acta Metall. 2 (1954), pp. 680–683. doi: 10.1016/0001-6160(54)90115-7
  • M. Zehetbauer, G. Steiner, E. Schafler, A.V. Korznikov, and E. Korznikova, Deformation induced vacancies with severe plastic deformation: Measurements and modelling, Mater. Sci. Forum 503-504 (2006), pp. 57–64. doi: 10.4028/www.scientific.net/MSF.503-504.57
  • Y.B. Wang, J.C. Ho, X.Z. Liao, H.Q. Li, S.P. Ringer, and Y.T. Zhu, Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni–Fe alloy, Appl. Phys. Lett. 94 (2009), p. 011908. doi: 10.1063/1.3065025
  • D. Setman, M.B. Kerber, E. Schafler, and M.J. Zehetbauer, Activation enthalpies of deformation-induced lattice defects in severe plastic deformation Nanometals measured by differential scanning calorimetry, Metall. Mater. Trans. A. 41 (2010), pp. 810–815. doi: 10.1007/s11661-009-0058-0
  • O.F. Higuera-Cobos and J.M. Cabrera, Mechanical, microstructural and electrical evolution of commercially pure copper processed by equal channel angular extrusion, Mater. Sci. Eng. A. 571 (2013), pp. 103–114. doi: 10.1016/j.msea.2013.01.076
  • H.D. Mengelberg, M. Meixner, and K. Lücke, Zur kinetik der rekristallisation von kupfer nach tieftemperaturverformung, Acta Metall. 13 (1965), pp. 835–844. doi: 10.1016/0001-6160(65)90148-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.