235
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Stability, elasticity and electronic structures of Co-Zr binary intermetallic compounds

, , ORCID Icon, , , , , & show all
Pages 874-893 | Received 15 Feb 2019, Accepted 23 Dec 2019, Published online: 09 Jan 2020

References

  • A.M. Ghemawat, M. Foldeaki, R. Dunlap and R. O'Hadley, New microcrystalline hard magnets in a Co-Zr-B alloy system. IEEE Trans. Magn. 25 (1989), pp. 3312–3314. doi: 10.1109/20.42288
  • R.P. Elliott, M. Hansen and K. Anderko, Constitution of Binary Alloys, First Supplement, McGraw-Hill Book Company, New York, 1965.
  • S. Bataleva, V. Kuprina, V. Burnasheva, V.Y. Markiv, G. Ronami and S. Kuznetsova, A phase diagram of the Co-Zr system. Vestn. Mosk. Univ., Ser. 2 Khim 11 (1970), pp. 557–561.
  • W. Pechin, D. Williams and W. Larsen, The zirconium-cobalt alloy system. Am. Soc. Metals, Trans. Quart 57 (1964), pp. IS–744.
  • F. Bonhomme, K. Yvon, and M. Zolliker, Cheminform abstract: tetragonal Zr2CoD5 with filled Al2Cu-type structure and ordered deuterium distribution. Cheminform 24 (1993), pp. 129–132.
  • Y. Kaneno, K. Asao, M. Yoshida, H. Tsuda and T. Takasugi, Tensile properties of recrystallized B2 CoZr intermetallic alloys. J. Alloys Compd. 456 (2008), pp. 125–134. doi: 10.1016/j.jallcom.2007.02.067
  • E. Akiba and H. Iba, Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 6 (1998), pp. 461–470. doi: 10.1016/S0966-9795(97)00088-5
  • A.H. Moghadam, V. Dashtizad, A. Kaflou, H. Yoozbashizadeh and R. Ashiri, Development of a nanostructured Zr3Co intermetallic getter powder with enhanced pumping characteristics. Intermetallics 57 (2015), pp. 51–59. doi: 10.1016/j.intermet.2014.10.003
  • P. Ohodnicki Jr, N. Cates, D. Laughlin, M. McHenry and M. Widom, Ab initio theoretical study of magnetization and phase stability of the (Fe, Co, Ni)23B6 and (Fe, Co, Ni)23Zr6 structures of Cr23C6 and Mn23Th6 prototypes. Phys. Rev. B 78 (2008), pp. 144–414. doi: 10.1103/PhysRevB.78.144414
  • W.F. Lu, C.J. Li, B. Sarac, D. Şopu, J.H. Yi, J. Tan, M. Stoica and J. Eckert, Structural, elastic and electronic properties of CoZr in B2 and B33 structures under high pressure. J. Alloys Comp.d 705 (2017), pp. 445–455. doi: 10.1016/j.jallcom.2017.02.085
  • D. Agosta, J. Hightower, K. Foster, R. Leisure and Z. Gavra, Elastic moduli of polycrystalline ZrCo as a function of temperature. J. Alloys Compd. 346 (2002), pp. 1–5. doi: 10.1016/S0925-8388(02)00485-1
  • S.F. Matar, Drastic changes of electronic, magnetic, mechanical and bonding properties in Zr2Co by hydrogenation. Intermetallics 36 (2013), pp. 25–30. doi: 10.1016/j.intermet.2012.12.012
  • D. Chattaraj, R.A. Jat, S.C. Parida, R. Agarwal and S. Dash, High temperature enthalpy increments and thermodynamic functions of ZrCo: An experimental and theoretical study. Thermochim. Acta 614 (2015), pp. 16–20. doi: 10.1016/j.tca.2015.05.024
  • M. Segall, P.J. Lindan, M.a. Probert, C. Pickard, P. Hasnip, S. Clark and M. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14 (2002), pp. 17–27.
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Y.L. Jin, W.Y. Zhang, R. Skomski, S. Valloppilly, J.E. Shield and D.J. Sellmyer, Phase composition and nanostructure of Zr2Co11-based alloys. J. Appl. Phys. 115 (2014), pp. 17A739. doi: 10.1063/1.4867226
  • V. Kuznetsov, K. Palkina and Z. Popova, The cobalt-sulfur system. IZV AKAD NAUK SSSR Neorgan Materialy 1 (1965), pp. 675–689.
  • I. Harris, D. Hussain and K. Barraclough, THE CONSTITUTION OF THE BINARY EQUIATOMIC ALLOYS OF Zr WITH Fe, Co, AND Ni, Univ. of Birmingham, Eng., 1970
  • Y.B. Kuzma, V.Y. Markiv, Y.V. Voroshilov, R.V. Skolozdra, Y.B. Kuzma, V.Y. Markiv, Y.V. Voroshilov and R.V. Skolozdra, X-ray structural analysis of some Zr-Fe and Zr-Co alloys Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy (USSR) For English translation see Inorg. Mater.(Engl. Transl.) 2 (1966), pp. 259–263.
  • V. Paul-Boncour, F. Bouree-Vigneron, S. Filipek, I. Marchuk, I. Jacob and A. Percheron-Guegan, Neutron diffraction study of ZrM2Dx deuterides (M=Fe, Co). J. Alloys Compd. 356-357 (2003), pp. 69–72. doi: 10.1016/S0925-8388(03)00102-6
  • O. Ivanova, A. Adamova and E. Tararaeva, Tregubov. Structure of Zirconium Alloys, Izd, Nauka, Moscow, 1973.
  • D.M. Bailey and J.F. Smith, A note on the structure of Zr2Co. Acta Crystallogr. 14 (1961), pp. 1084–1084. doi: 10.1107/S0365110X61003119
  • P. Kripyakevich, V.Y. Markiv, and V. Burnashova, The crystal structure of the compound Zr3Co. Dopov. Akad. Nauk Ukr. RSR, Ser. A 3 (1962), pp. 30–32.
  • M. Pötzschke and K. Schubert, On the constitution of some systems homologous or quasihomologous to T4-B3. II. The system Ti-Al, Zr-Al, Hf-Al, Mo-Al and some ternary systems’. Z. Metallkd 53 (1962), pp. 548–561.
  • C. Colinet and A. Pasturel, Phase stability and electronic structure in ZrAl 3 compound. J. Alloys Compd. 319 (2001), pp. 154–161. doi: 10.1016/S0925-8388(01)00879-9
  • O. Sidorov, Y. Esin and P. Geld, Enthalpies of formation of zirconium alloys with iron, cobalt, nickel, and copper. Melts(USSR 3 (1989), pp. 162–167.
  • J. Gachon and J. Hertz, Enthalpies of formation of binary phases in the systems FeTi, FeZr, CoTi, CoZr, NiTi, and NiZr, by direct reaction calorimetry. Calphad 7 (1983), pp. 1–12. doi: 10.1016/0364-5916(83)90024-X
  • A. Durga and K.C.H. Kumar, Thermodynamic optimization of the Co–Zr system. Calphad 34 (2010), pp. 200–205. doi: 10.1016/j.calphad.2010.02.006
  • C. Colinet, A. Pasturel and P. Hicter, Trends in cohesive energy of transition metal alloys. Calphad 9 (1985), pp. 71–99. doi: 10.1016/0364-5916(85)90032-X
  • Y. Duan, B. Huang, Y. Sun, M. Peng and S. Zhou, Stability, elastic properties and electronic structures of the stable Zr–Al intermetallic compounds: A first-principles investigation. J. Alloys Compd. 590 (2014), pp. 50–60. doi: 10.1016/j.jallcom.2013.12.079
  • M. Todorova, M. Borg, C. Stampfl and M. Scheffler, Order-disorder phase transitions: a DFT-(Wang-Landau) MC study, APS March Meeting Abstracts, 2006.
  • G.L.W. Hart, S. Curtarolo, T.B. Massalski, and O. Levy, Comprehensive search for new phases and compounds in binary alloy systems based on Platinum-group metals, using a computational first-principles approach. Phys. Rev. X 3 (2013), p. 041035.
  • J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, New York, 1985.
  • B. Karki, G. Ackland and J. Crain, Elastic instabilities in crystals from ab initio stress-strain relations. J. Phys.: Condens. Matter 9 (1997), pp. 8579–8589.
  • D.C. Wallace and H. Callen, Thermodynamics of crystals. Eos T. Am. Geophys. Union 40 (1972), pp. 1718–1719.
  • O. Beckstein, J. Klepeis, G. Hart and O. Pankratov, First-principles elastic constants and electronic structure of α− Pt 2 Si and PtSi. Phys. Rev. B 63 (2001), pp. 134112–134112. doi: 10.1103/PhysRevB.63.134112
  • H. Ozisik, E. Deligoz, K. Colakoglu and G. Surucu, Structural and mechanical stability of rare-earth diborides. Chin. Phys. B. 22 (2013), pp. 369–376. doi: 10.1088/1674-1056/22/4/046202
  • D. Chattaraj, S. Parida, S. Dash and C. Majumder, Density functional study of vibrational, thermodynamic and elastic properties of ZrCo and ZrCoX3 (X=H, D and T) compounds. J. Alloys Compd. 629 (2015), pp. 297–304. doi: 10.1016/j.jallcom.2014.12.221
  • S. Chen, Y. Sun, Y.H. Duan, B. Huang and M.J. Peng, Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo 2 from first-principles calculations. Journal of Alloys & Compounds 630 (2015), pp. 202–208. doi: 10.1016/j.jallcom.2015.01.038
  • Z.j. Wu, E.j. Zhao, H.p. Xiang, X.f. Hao, X.j. Liu and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76 (2007), pp. 54–115.
  • R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. London, Sect. A 65 (1952), pp. 349–354. doi: 10.1088/0370-1298/65/5/307
  • E. Schreiber, O.L. Anderson, N. Soga and J.F. Bell, Elastic constants and their measurement. J. Appl. Mech. 42 (1975), pp. 747–748. doi: 10.1115/1.3423687
  • Z.G. Li, C.G. Piao, X. Pan, Y.K. Wei, Y. Cheng and G.F. Ji, First-principles investigations on elastic, phonon and thermodynamic properties of SrB6 under pressure. Phys. B 407 (2012), pp. 361–367. doi: 10.1016/j.physb.2011.10.054
  • E.W.M.A.A. Maradudin, G.H. Weiss and I.P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press, New York, 1971.
  • N. Korozlu, K. Colakoglu, E. Deligoz and S. Aydin, The elastic and mechanical properties of MB12 (M=Zr, Hf, Y, Lu) as a function of pressure. J. Alloys Compd. 546 (2013), pp. 157–164. doi: 10.1016/j.jallcom.2012.08.062
  • I.R. Shein and A.L. Ivanovskii, Elastic properties of mono-and polycrystalline hexagonal AlB2 like diborides of s, p and d metals from first-principles calculations. J. Phys.: Condens. Matter 20 (2008), pp. 8106–8110.
  • S. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London, Edinburgh, and Dublin Philos. Mag. J. Sci. 45 (1954), pp. 823–843. doi: 10.1080/14786440808520496
  • J. Lewandowski, W. Wang and A. Greer, Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85 (2005), pp. 77–87. doi: 10.1080/09500830500080474
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101 (2008), pp. 055504. doi: 10.1103/PhysRevLett.101.055504
  • D. Music, A. Houben, R. Dronskowski and J.M. Schneider, Ab initio study of ductility in M2AlC (M = Ti, V, Cr). Phys. Rev. B 75 (2007), pp. 102–174. doi: 10.1103/PhysRevB.75.174102
  • J. Feng, B. Xiao, R. Zhou, W. Pan and D.R. Clarke, Anisotropic elastic and thermal properties of the double perovskite slab–rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure. Acta Mater. 60 (2012), pp. 3380–3392. doi: 10.1016/j.actamat.2012.03.004
  • C.L. Fu, X. Wang, Y.Y. Ye and K.M. Ho, Phase stability, bonding mechanism, and elastic constants of Mo5Si3 by first-principles calculation. Intermetallics 7 (1999), pp. 179–184. doi: 10.1016/S0966-9795(98)00018-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.