541
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Understanding the effect of prior bainite/martensite on the formation of carbide-free bainite

, , &
Pages 797-821 | Received 04 Oct 2019, Accepted 27 Dec 2019, Published online: 15 Jan 2020

References

  • F.G. Caballero and H.K.D.H. Bhadeshia, Very strong bainite. Curr. Opin. Solid State Mater. Sci. 8 (2004), pp. 251–257. doi: 10.1016/j.cossms.2004.09.005
  • J. Pacyna, P. Bala, S. Dobosz, A. Kokosza, and S. Kac, The microstructure and properties of the bainitic cast steel for scissors crossovers. J. Achiev. Mater. Manuf. Eng. 39 (2010), pp. 19–26.
  • F.G. Caballero, S. Allain, J. Cornide, J.D. Puerta Velásquez, C. Garcia-Mateo, and M.K. Miller, Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application. Mater. Des. 49 (2013), pp. 667–680. doi: 10.1016/j.matdes.2013.02.046
  • S. Das, S. Sinha, A. Lodh, A.R. Chintha, M. Krugla, and A. Haldar, Hot-rolled and continuously cooled bainitic steel with good strength–elongation combination. Mater. Sci. Technol. 33 (2017), pp. 1026–1037. doi: 10.1080/02670836.2016.1268663
  • S.M. Hasan, M. Ghosh, D. Chakrabarti, and S.B. Singh, Development of continuously cooled low-carbon, low-alloy, high strength carbide-free bainitic rail steels. Mater. Sci. Eng. A 771 (2020), pp. 138590. doi: 10.1016/j.msea.2019.138590
  • F.G. Caballero, M.J. Santofimia, C. Capdevila, C. García-Mateo, and C. García de Andrés, Design of advanced bainitic steels by optimisation of TTT diagrams and T0 curves. ISIJ Int. 46 (2006), pp. 1479–1488. doi: 10.2355/isijinternational.46.1479
  • G. Gomez, T. Pérez, and H.K.D.H. Bhadeshia, Strong bainitic steels by continuous cooling transformation. New Dev. Metall. Appl. High Strength Steels 1-2 (2008), pp. 571–582.
  • S. Das and A. Haldar, Continuously cooled ultrafine bainitic steel with excellent strength-elongation combination. Metall. Mater. Trans. A 45A (2014), pp. 1844–1854. doi: 10.1007/s11661-013-2173-1
  • E. Scheil, Anlaufzeit der austenitumwandlung. Archiv für das Eisenhüttenwesen 8 (1935), pp. 565–567. doi: 10.1002/srin.193500186
  • S.S. Shteinberg, The relation between the cooling rate, the transformation rate, the degree of supercooling of austenite, and the critical quenching rate. Met. Sci. Heat Treat. 14 (1972), pp. 758–760. doi: 10.1007/BF00652025
  • O.N. Mohanty, On the stabilization of retained austenite: mechanism and kinetics. Mater. Sci. Eng. B 32 (1995), pp. 267–278. doi: 10.1016/0921-5107(95)03017-4
  • H.K.D.H. Bhadeshia and S.R. Honeycombe, Steels: Microstructures and Properties, 3r ed., Butterworth-Heinemann, Oxford, 2006.
  • H.K.D.H. Bhadeshia, Bainite in Steels: Transformation, Microstructure and Properties, 2nd ed., The Institute of Materials, London, 2001.
  • D. Quidort and Y.J.M. Brechet, Isothermal growth kinetics of bainite in 0.5% C steels. Acta Mater. 49 (2001), pp. 4161–4170. doi: 10.1016/S1359-6454(01)00316-0
  • I.A. Yakubtsov and G.R. Purdy, Analyses of transformation kinetics of carbide-free bainite above and below the athermal martensite-start temperature. Metall. Mater. Trans. A 43A (2012), pp. 437–446. doi: 10.1007/s11661-011-0911-9
  • H. Chen, K. Zhu, L. Zhao, and S. Van Der Zwaag, Analysis of transformation stasis during the isothermal bainitic ferrite formation in Fe-C-Mn and Fe-C-Mn-Si alloys. Acta Mater. 61 (2013), pp. 5458–5468. doi: 10.1016/j.actamat.2013.05.034
  • T. Ko and S.A. Cottrell, The formation of bainite. J. Iron Steel Inst. 172 (1952), pp. 307–313.
  • R.H. Goodenow, R.H. Barkalow, and R.F. Hehemann, Bainite transformations in hypoeutectoid steels. Phys. Prop. Martensite Bainite Spec. Rep. 93 (1965), pp. 135–141.
  • W. Gong, Y. Tomota, S. Harjo, Y.H. Su, and K. Aizawa, Effect of prior martensite on bainite transformation in nanobainite steel. Acta Mater. 85 (2015), pp. 243–249. doi: 10.1016/j.actamat.2014.11.029
  • A. Navarro-López, J. Sietsma, and M.J. Santofimia, Effect of prior athermal martensite on the isothermal transformation kinetics below Ms in a low-C high-Si steel. Metall. Mater. Trans. A 47A (2016), pp. 1028–1039. doi: 10.1007/s11661-015-3285-6
  • H. Kawata, N. Yoshinaga, M. Takahashi, N. Sugiura, and K. Hayashi, Effect of martensite in initial structure on bainite transformation. Mater. Sci. Forum 638–642 (2010), pp. 3307–3312. doi: 10.4028/www.scientific.net/MSF.638-642.3307
  • H.K.D.H. Bhadeshia and D.V. Edmonds, Bainite in silicon steels: new composition-property approach part 1. Met. Sci. 17 (1983), pp. 411–419. doi: 10.1179/030634583790420600
  • B.D. Cullity, Elements of X-ray Diffraction. 2nd ed. Addision-Wesley Publishing Company Inc., Massachusetts, USA, 1978.
  • R.J. Hill and C.J. Howard, Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Crystallogr. 20 (1987), pp. 467–474. doi: 10.1107/S0021889887086199
  • W. Steven and A.G. Haynes, The temperature of formation of martensite and bainite in low-alloy steels: some effects of chemical composition. J. Iron Steel Inst. 183 (1956), pp. 349–359.
  • S.M.C. van Bohemen and D.N. Hanlon, A physically based approach to model the incomplete bainitic transformation in high-Si steels. Int. J. Mater. Res. 103 (2012), pp. 987–991. doi: 10.3139/146.110744
  • C.M. Wayman and H.K.D.H. Bhadeshia, Physical Metallurgy, Vol. 2, Elesevier Science, Amsterdam, 1996.
  • S.B. Singh and H.K.D.H. Bhadeshia, Estimation of bainite plate-thickness in low-alloy steels. Mater. Sci. Eng. A 245 (1998), pp. 72–79. doi: 10.1016/S0921-5093(97)00701-6
  • D.J. Dyson and B. Holmes, Effect of alloying additions on the lattice parameter of austenite. J. Iron Steel Inst. 208 (1970), pp. 469–474.
  • H.K.D.H. Bhadeshia, Bainite: overall transformation kinetics. J. Phys. 43 (1982), pp. 443–448.
  • S.B. Singh, Phase transformations from deformed austenite, Ph. D. diss., University of Cambridge, 1998.
  • H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed, Stress induced transformation to bainite in Fe–Cr–Mo–C pressure vessel steel. Mater. Sci. Technol. 7 (1991), pp. 686–698. doi: 10.1179/mst.1991.7.8.686
  • C. Garcia-Mateo, J.A. Jimenez, H.W. Yen, M.K. Miller, L. Morales-Rivas, M. Kuntz, S.P. Ringer, J.R. Yang, and F.G. Caballero, Low temperature bainitic ferrite: evidence of carbon super-saturation and tetragonality. Acta Mater. 91 (2015), pp. 162–173. doi: 10.1016/j.actamat.2015.03.018
  • J.H. Jang, H.K.D.H. Bhadeshia, and D.-W. Suh, Solubility of carbon in tetragonal ferrite in equilibrium with austenite. Scr. Mater. 68 (2013), pp. 195–198. doi: 10.1016/j.scriptamat.2012.10.017
  • C. Zener, Kinetics of the decomposition of austenite. Trans. Am. Inst. Min. Metall. Eng. 167 (1946), pp. 550–595.
  • A. Udyansky, J. von Pezold, V.N. Bugaev, M. Friák, and J. Neugebauer, Interplay between long-range elastic and short-range chemical interactions in Fe-C martensite formation. Phys. Rev. B 79 (2009), pp. C1–C5. doi: 10.1103/PhysRevB.79.224112
  • D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Quenching and partitioning martensite — a novel steel heat treatment. Mater. Sci. Eng. A 438–440 (2006), pp. 25–34. doi: 10.1016/j.msea.2006.02.133
  • S.M.C. van Bohemen and J. Sietsma, Modelling of isothermal bainite formation based on the nucleation kinetics. Int. J. Mater. Res. 99 (2008), pp. 739–747. doi: 10.3139/146.101695
  • H.K.D.H. Bhadeshia and J.W. Christian, Bainite in steels. Metall. Trans. A 21A (1990), pp. 767–797. doi: 10.1007/BF02656561
  • H. Matsuda and H.K.D.H. Bhadeshia, Kinetics of the bainite transformation. Proc. Royal Soc. London. Ser. A. Math. Phys. Eng. Sci. 460 (2004), pp. 1707–1722. doi: 10.1098/rspa.2003.1225
  • N.A. Chester and H.K.D.H. Bhadeshia, Mathematical modelling of bainite transformation kinetics. J. Phys. IV JP 7 (1997), pp. 41–46.
  • G. Miyamoto, A. Shibata, T. Maki, and T. Furuhara, Precise measurement of strain accommodation in austenite matrix surrounding martensite in ferrous alloys by electron backscatter diffraction analysis. Acta Mater. 57 (2009), pp. 1120–1131. doi: 10.1016/j.actamat.2008.10.050

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.