178
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A non-local damage model for the fatigue behaviour of metallic polycrystals

Pages 955-981 | Received 10 Apr 2019, Accepted 31 Dec 2019, Published online: 16 Jan 2020

References

  • K.S. Chan, Roles of microstructure in fatigue crack initiation, Int. J. Fatigue 32 (2010), pp. 1428–1447. doi: 10.1016/j.ijfatigue.2009.10.005
  • G.M. Castelluccio and D.L. McDowell, Microstructure-sensitive small fatigue crack growth assessment: Effect of strain ratio, multiaxial strain state, and geometric discontinuities, Int. J. Fatigue 82 (2016), pp. 521–529. doi: 10.1016/j.ijfatigue.2015.09.007
  • D.L. McDowell and F.P.E. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation, Int. J. Fatigue 32 (2010), pp. 1521–1542. doi: 10.1016/j.ijfatigue.2010.01.003
  • K. Dang Van, Sur la résistance à la fatigue des métaux. Sciences Techniques Armement 3 (1973), pp. 647–722.
  • A. Fatemi and D.F. Socie DF, A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract. Eng. Mater. Struct. 11 (1988), pp. 149–165. doi: 10.1111/j.1460-2695.1988.tb01169.x
  • C. Przybyla, R. Prasannavenkatesan, N. Salajegheh, and D.L. McDowell, Microstructure-sensitive modeling of high cycle fatigue, Int. J. Fatigue. 32 (2010), pp. 512–525. doi: 10.1016/j.ijfatigue.2009.03.021
  • Y. Guilhem, S. Basseville, F. Curtit, J.M. Stéphan, and G. Cailletaud, Investigation of the effect of grain clusters on fatigue crack initiation in polycrystals, Int. J. Fatigue. 32 (2010), pp. 1748–1763. doi: 10.1016/j.ijfatigue.2010.04.003
  • C. Robert, N. Saintier, T. Palin-Luc, and F. Morel, Micro-mechanical modelling of high cycle fatigue behaviour of metals under multiaxial loads, Mech. Mater. 55 (2012), pp. 112–129. doi: 10.1016/j.mechmat.2012.08.006
  • R. Guerchais, C. Robert, F. Morel, and N. Saintier, Micromechanical study of the loading path effect in high cycle fatigue, Int. J. Fatigue 59 (2014), pp. 64–75. doi: 10.1016/j.ijfatigue.2013.09.014
  • G.M. Castelluccio and D.L. McDowell, A mesoscale approach for growth of 3D microstructurally small fatigue cracks in polycrystals, Int. J. Damage Mech. 23 (2014), pp. 791–818. doi: 10.1177/1056789513513916
  • G.M. Castelluccio and D.L. McDowell, Mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals, Mater. Sci. Eng. A 598 (2014), pp. 34–55. doi: 10.1016/j.msea.2014.01.015
  • J. Lemaitre, A Course on Damage Mechanics, Springer-Verlag, Berlin, 1996.
  • V. Monchiet, E. Charkaluk, and D. Kondo, Plasticity-damage based micromechanical modelling in high cycle fatigue, C. R. Mecanique 334 (2006), pp. 129–136. doi: 10.1016/j.crme.2005.12.002
  • J. Zghal, H. Gmati, C. Mareau, and F. Morel, A crystal plasticity based approach for the modelling of high cycle fatigue damage in metallic materials, Int. J. Damage Mech. 25 (2016), pp. 611–628. doi: 10.1177/1056789516650247
  • C. Mareau and F. Morel, A continuum damage mechanics-based approach for the high cycle fatigue behavior of metallic polycrystals. Int. J. Damage Mech. 28 (2018), pp. 1–19.
  • G.A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts, J. Non-Equilib. Thermodyn. 19 (1994), pp. 217–249.
  • R. de Borst, J. Pamin, and M.G.D. Geers, On coupled gradient-dependent plasticity and damage theories with a view to localization analysis, Eur. J. Mech. A/Solids 18 (1999), pp. 939–962. doi: 10.1016/S0997-7538(99)00114-X
  • M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power, Int. J. Solids Struct. 33 (1996), pp. 1083–1103. doi: 10.1016/0020-7683(95)00074-7
  • G.A. Maugin, Internal variables and dissipative structures, J. Non-Equilib. Thermodyn. 15 (1990), pp. 173–192. doi: 10.1515/jnet.1990.15.2.173
  • P. Germain, Q.S. Nguyen, and P. Suquet, Continuum thermodynamics, J. Appl. Mech. 50 (1983), pp. 1010–1020. doi: 10.1115/1.3167184
  • P. Ireman and Q.S. Nguyen, Using the gradients of temperature and internal in continuum thermodynamics, C. R. Mecanique 332 (2004), pp. 249–255. doi: 10.1016/j.crme.2004.01.012
  • E.H. Lee, Elastic-plastic deformation at finite strains, J. Appl. Mech. 36 (1969), pp. 1–6. doi: 10.1115/1.3564580
  • Q. Chen and H.W. Liu, Resolved shear stress intensity coefficient and fatigue crack growth in large crystals, Theor. Appl. Fract. Mech. 10 (1988), pp. 111–122. doi: 10.1016/0167-8442(88)90003-1
  • C. Miehe, F. Welschinger, and M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Int. J. Numer. Meth. Engng. 83 (2010), pp. 1273–1311. doi: 10.1002/nme.2861
  • T.T. Nguyen, J. Réthoré, J. Yvonnet, and M.C. Baietto, Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials, Comput. Mech. 60 (2017), pp. 289–314. doi: 10.1007/s00466-017-1409-0
  • H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Engrg. 157 (1998), pp. 69–94. doi: 10.1016/S0045-7825(97)00218-1
  • N. Lahellec, J .C. Michel, H. Moulinec, and P. Suquet, Analysis of inhomogeneous materials at large strains using Fast Fourier transforms, in Computational Mechanics of Solid Materials at large Strains, C. Miehe, ed., Kluwer Academic Press, Stuttgart, 2003, pp. 247–258.
  • P. Eisenlohr, M. Diehl, R.A. Lebensohn, and F. Roters, A spectral method solution to crystal elasto-viscoplasticity at finite strains, Int. J. Plast. 46 (2013), pp. 37–53. doi: 10.1016/j.ijplas.2012.09.012
  • F. Willot, Fourier-based schemes for computing the mechanical response of composites with accurate local fields, C. R. Mecanique 343 (2015), pp. 232–245. doi: 10.1016/j.crme.2014.12.005
  • R. Hill, On constitutive macro-variables for heterogeneous solids at finite strain, Proc. R. Soc. Lond. A. 326 (1972), pp. 131–147. doi: 10.1098/rspa.1972.0001
  • M. Kabel, A. Fink, and M. Schneider, The composite voxel technique for inelastic problems, Comput. Methods Appl. Mech. Eng. 322 (2017), pp. 396–418. doi: 10.1016/j.cma.2017.04.025
  • R. Chang, A dislocation mechanism of grain boundary crack nucleation and growth under low cyclic stresses, Scripta Metall. 13 (1979), pp. 1079–1081. doi: 10.1016/0036-9748(79)90207-2
  • H.J. Christ, On the orientation of cyclic-slip-induced intergranular fatigue cracks in face-centered cubic metals, Mater. Sci. Engng. A 117 (1989), pp. L25–L29. doi: 10.1016/0921-5093(89)90115-9
  • B. Berthel, B. Wattrisse, A. Chrysochoos, and A. Galtier, Thermographic analysis of fatigue dissipation properties of steel sheets, Strain 43 (2007), pp. 273–279. doi: 10.1111/j.1475-1305.2007.00349.x
  • M.B. Bever, D.L. Holt, and A.L. Titchener, The stored energy of cold work, Prog. Mater. Sci. 17 (1973), pp. 5–177. doi: 10.1016/0079-6425(73)90001-7
  • L. Vitos, A.V. Ruban, H.L. Skriver, and J. Kollár, The surface energy of metals, Surf. Sci. 411 (1998), pp. 186–202. doi: 10.1016/S0039-6028(98)00363-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.