296
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Interface stress effect tuning and enhancing the energy dissipation of staggered nanocomposites

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1682-1702 | Received 21 Jun 2019, Accepted 10 Feb 2020, Published online: 02 Mar 2020

References

  • B. Ji and H. Gao, Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52 (2004), pp. 1963–1990. doi: 10.1016/j.jmps.2004.03.006
  • J.F. Mano, Viscoelastic properties of bone: mechanical spectroscopy studies on a chicken model. Mater. Sci. Eng. C 25 (2005), pp. 145–152. doi: 10.1016/j.msec.2005.01.017
  • R. Lakes, Viscoelastic Materials, Cambridge University, New York, 2009.
  • B. Mohanty, K.S. Katti, D.R. Katti and D. Verma, Dynamic nanomechanical response of nacre. J. Mater. Res 21 (2006), pp. 2045–2051. doi: 10.1557/jmr.2006.0247
  • B. Yeom, T. Sain, N. Lacevic, D. Bukharina, S.H. Cha, A.M. Waas, E.M. Arruda and N.A. Kotov, Abiotic tooth enamel. Nature 543 (2017), pp. 95–98. doi: 10.1038/nature21410
  • Y. Zhou, P.F. Damasceno, B.S. Somashekar, M. Engel, F. Tian, J. Zhu, R. Huang, K. Johnson, C. McIntyre, K. Sun, M. Yang, P.F. Green, A. Ramamoorthy, S.C. Glotzer and N.A. Kotov, Unusual multiscale mechanics of biomimetic nanoparticle hydrogels. Nat. Commun 9 (2018), pp. 181. doi: 10.1038/s41467-017-02579-w
  • J. Peng and Q. Cheng, High-performance nanocomposites inspired by nature. Adv. Mater 29 (2017), pp. 1702959. doi: 10.1002/adma.201702959
  • M. Kaur, M. Arshad and A. Ullah, In-situ nanoreinforced green bionanomaterials from natural keratin and Montmorillonite (MMT)/cellulose nanocrystals (CNC). ACS Sustain. Chem. Eng 6 (2018), pp. 1977–1987. doi: 10.1021/acssuschemeng.7b03380
  • X. Li, G. Li, X. Su and Z. Wang, Synergistic reinforcement of epoxy/basalt fiber composites with dimensionally different nanoparticles. Polym. Eng. Sci 59 (2018), pp. 730–735. doi: 10.1002/pen.24990
  • J. Li, M. Zhou, G. Cheng, F. Cheng, Y. Lin and P.X. Zhu, Fabrication and characterization of starch-based nanocomposites reinforced with montmorillonite and cellulose nanofibers. Carbohydr. Polym 210 (2019), pp. 429–436. doi: 10.1016/j.carbpol.2019.01.051
  • B. Paliwal, W.B. Lawrimore, M.Q. Chandler and M.F. Horstemeyer, Nanomechanical modeling of interfaces of polyvinyl alcohol (PVA)/clay nanocomposite. Philos. Mag 97 (2017), pp. 1179–1208. doi: 10.1080/14786435.2017.1293859
  • P. Zhang and A.C. To, Highly enhanced damping figure of merit in biomimetic hierarchical staggered composites. J. Appl. Mech 81 (2014), pp. 051015. doi: 10.1115/1.4026239
  • P. Zhang, M.A. Heyne and A.C. To, Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing. J. Mech. Phys. Solids 83 (2015), pp. 285–300. doi: 10.1016/j.jmps.2015.06.015
  • M. Qwamizadeh, P. Liu, Z. Zhang, K. Zhou and Y. Wei Zhang, Hierarchical structure enhances and tunes the damping behavior of load-bearing biological materials. J. Appl. Mech 83 (2016), pp. 051009. doi: 10.1115/1.4032861
  • Z.Q. Zhang, B. Liu, Y. Huang, K.C. Hwang and H. Gao, Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution. J. Mech. Phys. Solids 58 (2010), pp. 1646–1660. doi: 10.1016/j.jmps.2010.07.004
  • M. Qwamizadeh, M. Lin, Z. Zhang, K. Zhou and Y.W. Zhang, Bounds for the dynamic modulus of unidirectional composites with bioinspired staggered distributions of platelets. Compos. Struct 167 (2017), pp. 152–165. doi: 10.1016/j.compstruct.2017.01.077
  • M. Qwamizadeh, K. Zhou and Y.W. Zhang, Damping behavior investigation and optimization of the structural layout of load-bearing biological materials. Int. J. Mech. Sci 120 (2017), pp. 263–275. doi: 10.1016/j.ijmecsci.2016.12.003
  • X.H. Junjie Liu, W. Zhu and X. Wei, Optimization of damping properties of staggered composites through microstructure design. J. Appl. Mech 85 (2018), pp. 101002. doi: 10.1115/1.4040538
  • I. Zlotnikov, E. Zolotoyabko and P. Fratzl, Nano-scale modulus mapping of biological composite materials: theory and practice. Prog. Mater. Sci 87 (2017), pp. 292–320. doi: 10.1016/j.pmatsci.2017.03.002
  • H.L. Duan, J. Wang, Z.P. Huang and B.L. Karihaloo, Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53 (2005), pp. 1574–1596. doi: 10.1016/j.jmps.2005.02.009
  • M.E. Gurtin and A.I. Murdoch, A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal 57 (1975), pp. 291–323. doi: 10.1007/BF00261375
  • M.E. Gurtin and A.I. Murdoch, Surface stress in solids. Int. J. Solids Struct 14 (1978), pp. 431–440. doi: 10.1016/0020-7683(78)90008-2
  • R. Hill, Theory of mechanical properties of fibre-strengthened materials: I. elastic behaviour. J. Mech. Phys. Solids 12 (1964), pp. 199–212. doi: 10.1016/0022-5096(64)90019-5
  • T. Chen and G.J. Dvorak, Fibrous nanocomposites with interface stress: Hill’s and Levin’s connections for effective moduli. Appl. Phys. Lett 88 (2006), pp. 211912. doi: 10.1063/1.2206132
  • J.J. Gu and Q.C. He, Exact connections between the effective elastic moduli of fibre-reinforced composites with general imperfect interfaces. Int. J. Solids Struct 104-105 (2017), pp. 65–72. doi: 10.1016/j.ijsolstr.2016.10.026
  • T. Chen, G.J. Dvorak and C.C. Yu, Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal–mechanical connections. Int. J. Solids Struct 44 (2007), pp. 941–955. doi: 10.1016/j.ijsolstr.2006.05.030
  • L. Dong, J. Wang, P. Yan and Z. Guo, A Trefftz collocation method for multiple interacting spherical nano-inclusions considering the interface stress effect. Eng. Anal. Bound. Elem 94 (2018), pp. 172–183. doi: 10.1016/j.enganabound.2018.07.002
  • M. Dai, P. Schiavone and C.-F. Gao, Prediction of the stress field and effective shear modulus of composites containing periodic Inclusions Incorporating interface effects in Anti-plane shear. J. Elast 125 (2016), pp. 217–230. doi: 10.1007/s10659-016-9577-2
  • M. Dai, P. Schiavone and C.-F. Gao, Uniform strain fields inside periodic inclusions incorporating interface effects in anti-plane shear. Acta Mech. 227 (2016), pp. 2795–2803. doi: 10.1007/s00707-016-1660-z
  • E. Gordeliy, S.G. Mogilevskaya and S.L. Crouch, Transient thermal stresses in a medium with a circular cavity with surface effects. Int. J. Solids Struct 46 (2009), pp. 1834–1848. doi: 10.1016/j.ijsolstr.2008.12.014
  • M. Dai, C.-F. Gao and P. Schiavone, Closed-form solution for a circular nano-inhomogeneity with interface effects in an elastic plane under uniform remote heat flux. IMA J. Appl. Math 82 (2016), pp. 384–395.
  • L. Dong, C. Chao and P. Yan, Effective modulus of biological staggered nanocomposites with interface stress effect. Compos. Part B Eng 166 (2019), pp. 701–709. doi: 10.1016/j.compositesb.2019.03.001
  • M. Qwamizadeh, Z. Zhang, K. Zhou and Y.W. Zhang, Protein viscosity, mineral fraction and staggered architecture cooperatively enable the fastest stress wave decay in load-bearing biological materials. J. Mech. Behav. Biomed. Mater 60 (2016), pp. 339–355. doi: 10.1016/j.jmbbm.2016.02.016
  • M. Bacciocchi and A.M. Tarantino, Time-dependent behavior of viscoelastic three-phase composite plates reinforced by Carbon nanotubes. Compos. Struct 216 (2019), pp. 20–31. doi: 10.1016/j.compstruct.2019.02.083
  • M. Mours and H.H. Winter, Chapter 5 – mechanical spectroscopy of polymers, in Experimental Methods in Polymer Science, Tanaka T., ed., Academic Press, Boston, 2000. pp. 495–546.
  • P. Müller and A. Saúl, Elastic effects on surface physics. Surf. Sci. Rep 54 (2004), pp. 157–258. doi: 10.1016/j.surfrep.2004.05.001
  • P. Gumbsch and M.S. Daw, Interface stresses and their effects on the elastic moduli of metallic multilayers. Phys. Rev. B 44 (1991), pp. 3934–3938. doi: 10.1103/PhysRevB.44.3934
  • F.H. Streitz, R.C. Cammarata and K. Sieradzki, Surface-stress effects on elastic properties. II. Metallic multilayers. Phys. Rev. B 49 (1994), pp. 10707–10716. doi: 10.1103/PhysRevB.49.10707
  • C. Mi, S. Jun, D.A. Kouris and S.Y. Kim, Atomistic calculations of interface elastic properties in noncoherent metallic bilayers. Phys. Rev. B 77 (2008), pp. 075425. doi: 10.1103/PhysRevB.77.075425
  • V.B. Shenoy, Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71 (2005), pp. 094104. doi: 10.1103/PhysRevB.71.094104
  • L. Pahlevani and H.M. Shodja, Surface and interface effects on torsion of eccentrically two-phase fcc circular Nanorods: Determination of the surface/interface elastic properties via an atomistic Approach. J. Appl. Mech 78 (2011), pp. 011011. doi: 10.1115/1.4002211
  • S. Izumi, S. Hara, T. Kumagai and S. Sakai, A method for calculating surface stress and surface elastic constants by molecular dynamics: application to the surface of crystal and amorphous silicon. Thin Solid Films 467 (2004), pp. 253–260. doi: 10.1016/j.tsf.2004.03.034
  • C. Melis, S. Giordano and L. Colombo, Surface elastic properties in silicon nanoparticles. EPL 119 (2017), pp. 66005. doi: 10.1209/0295-5075/119/66005
  • ABAQUS, Analysis user’s manual, Version 6.13. SIMULIA Inc., 2013.
  • P. Dutov, O. Antipova, S. Varma, J.P. Orgel and J.D. Schieber, Measurement of elastic modulus of collagen type I single fiber. PLoS One 11 (2016), pp. e0145711. doi: 10.1371/journal.pone.0145711
  • J.-Y. Rho, L. Kuhn-Spearing and P. Zioupos, Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys 20 (1998), pp. 92–102. doi: 10.1016/S1350-4533(98)00007-1
  • J. Moradian-Oldak, S. Weiner, L. Addadi, W.J. Landis and W. Traub, Electron imaging and diffraction study of individual crystals of bone, mineralized tendon and synthetic carbonate apatite. Connect. Tissue Res 25 (1991), pp. 219–228. doi: 10.3109/03008209109029158
  • V. Ziv and S. Weiner, Bone crystal sizes: A comparison of transmission electron microscopic and X-Ray diffraction line width broadening techniques. Connect. Tissue Res 30 (1994), pp. 165–175. doi: 10.3109/03008209409061969
  • M.A. Rubin, I. Jasiuk, J. Taylor, J. Rubin, T. Ganey and R.P. Apkarian, TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33 (2003), pp. 270–282. doi: 10.1016/S8756-3282(03)00194-7
  • T. Hassenkam, G.E. Fantner, J.A. Cutroni, J.C. Weaver, D.E. Morse and P.K. Hansma, High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35 (2004), pp. 4–10. doi: 10.1016/j.bone.2004.02.024
  • R.Z. Wang, Z. Suo, A.G. Evans, N. Yao and I.A. Aksay, Deformation mechanisms in nacre. J. Mater. Res 16 (2001), pp. 2485–2493. doi: 10.1557/JMR.2001.0340

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.