709
Views
14
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Dislocation structure and dynamics govern pop-in modes of nanoindentation on single-crystal metals

, , , & ORCID Icon
Pages 1585-1606 | Received 20 Jun 2019, Accepted 29 Feb 2020, Published online: 13 Mar 2020

References

  • R. Saha and W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Mater. 50(1) (2002), pp. 23–38. doi: 10.1016/S1359-6454(01)00328-7
  • V. Maierkiener, B. Schuh, E.P. George, H. Clemens, and A. Hohenwarter, Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys, Mater. Des. 115 (2017), pp. 479–485. doi: 10.1016/j.matdes.2016.11.055
  • G. Cheng, S. Xin, Y. Wang, S.L. Tay, and G. Wei, Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties, Surf. Coat. Tech. 310 (2017), pp. 43–50. doi: 10.1016/j.surfcoat.2016.12.056
  • G.M. Pharr, E.G. Herbert, and Y. Gao, The indentation size effect: A critical examination of experimental observations and mechanistic interpretations, Annu. Rev. Mater. Res. 40 (2010), pp. 271–292. doi: 10.1146/annurev-matsci-070909-104456
  • T.L. Li, H. Bei, J.R. Morris, E.P. George, and Y.F. Gao, Scale effects in convoluted thermal/spatial statistics of plasticity initiation in small stressed volumes during nanoindentation, Mater. Sci. Tech. 28 (2012), pp. 1055–1059. doi: 10.1179/1743284712Y.0000000007
  • A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh, Discrete and continuous deformation during nanoindentation of thin films, Acta Mater. 48(9) (2000), pp. 2277–2295. doi: 10.1016/S1359-6454(00)00009-4
  • E. Rabkin, J.K. Deuschle, and B. Baretzky, On the nature of displacement bursts during nanoindentation of ultrathin Ni films on sapphire, Acta Mater. 58(5) (2010), pp. 1589–1598. doi: 10.1016/j.actamat.2009.11.002
  • W. Zhang, Y. Gao, Y. Xia, and H. Bei, Indentation schmid factor and incipient plasticity by nanoindentation pop-in tests in hexagonal close-packed single crystals, Acta Mater. 134 (2017), pp. 53–65. doi: 10.1016/j.actamat.2017.05.058
  • S. Pathak and S.R. Kalidindi, Spherical nanoindentation stress-strain curves, Mater. Sci. Eng. R 91 (2015), pp. 1–36. doi: 10.1016/j.mser.2015.02.001
  • Y. Xia, Y. Gao, G.M. Pharr, and H. Bei, Single versus successive pop in modes in nanoindentation tests of single crystals, J. Mater. Res. 31(14) (2016), pp. 2065–2075. doi: 10.1557/jmr.2016.193
  • W.A. Soer, J.T.M. D. Hosson, A.M. Minor, Z. Shan, S.A.S. Asif, and O.L. Warren, Incipient plasticity in metallic thin films, Appl. Phys. Lett. 90(18) (2007), p. 1432. doi: 10.1063/1.2736479
  • G. Xin, Displacement burst and hydrogen effect during loading and holding in nanoindentation of an iron single crystal, Scripta Mater. 53(11) (2005), pp. 1315–1320. doi: 10.1016/j.scriptamat.2005.06.042
  • S. Suresh, T.G. Nieh, and B. Choi, Nano-indentation of copper thin films on silicon substrates, Scripta Mater. 41 (1999), pp. 951–957. doi: 10.1016/S1359-6462(99)00245-6
  • G. Liu, S. Min, X. Liu, N. Song, S. Wang, Y. He, and L. Yong, An investigation of the mechanical behaviors of micro-sized tungsten whiskers using nanoindentation, Mater. Sci. Eng. A 594(4) (2014), pp. 278–286. doi: 10.1016/j.msea.2013.11.084
  • J. Li, K.J.V. Vliet, T. Zhu, S. Yip, and S. Suresh, Atomistic mechanisms governing elastic limit and incipient plasticity in crystals, Nature 418(6895) (2002), pp. 307–310. doi: 10.1038/nature00865
  • C.A. Schuh, J.K. Mason, and A.C. Lund, Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments, Nature Mater. 4(8) (2005), p. 617. doi: 10.1038/nmat1429
  • H. Bei, Y.F. Gao, S. Shim, E.P. George, and G.M. Pharr, Strength differences arising from homogeneous versus heterogeneous dislocation nucleation, Phys. Rev. B 77(6) (2008), p. 060103. doi: 10.1103/PhysRevB.77.060103
  • Y. Shibutani, T. Tsuru, and A. Koyama, Nanoplastic deformation of nanoindentation: Crystallographic dependence of displacement bursts, Acta Mater. 55(5) (2007), pp. 1813–1822. doi: 10.1016/j.actamat.2006.10.055
  • D. Rodney and R. Phillips, Structure and strength of dislocation junctions: An atomic level analysis, Phys. Rev. Lett. 82(8) (1999), p. 1704. doi: 10.1103/PhysRevLett.82.1704
  • C.R. Weinberger and W. Cai, The stability of Lomer–Cottrell jogs in nanopillars, Scripta Mater. 64(6) (2011), pp. 529–532. doi: 10.1016/j.scriptamat.2010.11.037
  • A. Gouldstone, H.J. Koh, K.Y. Zeng, A. Glannakopoulos, and S. Suresh, Discrete and continuous deformation during nanoindentation of thin films, Acta Mater. 48 (2000), pp. 2277–2295. doi: 10.1016/S1359-6454(00)00009-4
  • M. Dietiker, R.D. Nyilas, C. Solenthaler, and R. Spolenak, Nanoindentation of single-crystalline gold thin films: Correlating hardness and the onset of plasticity, Acta Mater. 56(15) (2008), pp. 3887–3899. doi: 10.1016/j.actamat.2008.04.032
  • E.T. Lilleodden and W.D. Nix, Microstructural length-scale effects in the nanoindentation behavior of thin gold films, Acta Mater. 54(6) (2006), pp. 1583–1593. doi: 10.1016/j.actamat.2005.11.025
  • S. Shim, H. Bei, E.P. George, and G.M. Pharr, A different type of indentation size effect, Scripta Mater. 59(10) (2008), pp. 1095–1098. doi: 10.1016/j.scriptamat.2008.07.026
  • M.J. Cordill, W.W. Gerberich, and N.R. Moody, Size effects on yield instabilities in nickel, Mater. Res. Soc. Symp. Proc. 976 (2007), pp. 67–72.
  • M. Li, D.J. Morrisc, S.L. Jennerjohnd, D.F. Bahrd, and L.E. Levinea, The role of probe shape on the initiation of metal plasticity in nanoindentation, Acta Mater. 60(12) (2012), pp. 4729–4739. doi: 10.1016/j.actamat.2012.05.026
  • D.F. Bahr, D.E. Kramer, and W.W. Gerberich, Non-linear deformation mechanisms during nanoindentation, Acta Mater. 46(10) (1998), pp. 3605–3617. doi: 10.1016/S1359-6454(98)00024-X
  • W.W. Gerberich, W. Yu, D. Kramer, A. Strojny, D. Bahr, E. Lilleodden, and J. Nelson, Elastic loading and elastoplastic unloading from nanometer level indentations for modulus determinations, J. Mater. Res. 13(2) (1998), pp. 421–439. doi: 10.1557/JMR.1998.0055
  • S. Vadalakonda, R. Banerjee, A. Puthcode, and R. Mirshams, Comparison of incipient plasticity in bcc and fcc metals studied using nanoindentation, Mater. Sci. Eng. A 426(1) (2006), pp. 208–213. doi: 10.1016/j.msea.2006.04.001
  • M.M. Biener, J. Biener, A.M. Hodge, and A.V. Hamza, Dislocation nucleation in bcc Ta single crystals studied by nanoindentation, Phys. Rev. B 76(76) (2007), p. 165422.
  • T.P. Remington, C.J. Ruestes, E.M. Bringa, B. Remington, C.H. Lu, B. Kad, and M.A. Meyers, Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation, Acta Mater. 78(5) (2014), pp. 378–393. doi: 10.1016/j.actamat.2014.06.058
  • L. Zhang and O. Takahito, Plasticity initiation and evolution during nanoindentation of an iron-3% silicon crystal, Phys. Rev. Lett. 112(14) (2014), p. 145504.
  • D.F. Bahr, D.E. Wilson, and D.A. Crowson, Energy considerations regarding yield points during indentation, J. Mater. Res. 14(6) (1999), pp. 2269–2275. doi: 10.1557/JMR.1999.0303
  • D. Wu and T.G. Nieh, Incipient plasticity and dislocation nucleation in body-centered cubic chromium, Mater. Sci. Eng. A 609(27) (2014), pp. 110–115. doi: 10.1016/j.msea.2014.04.107
  • L. Zhang, T. Ohmura, K. Seikido, K. Nakajima, T. Hara, and K. Tsuzaki, Direct observation of plastic deformation in iron-3% silicon single crystal by in situ nanoindentation in transmission electron microscopy, Scripta Mater. 64(9) (2011), pp. 919–922. doi: 10.1016/j.scriptamat.2011.01.037
  • D. Bufford, Y. Liu, J. Wang, H. Wang, and X. Zhang, In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries, Nature Commun. 5 (2014), p. 4864. doi: 10.1038/ncomms5864
  • A.M. Minor, S.A.S. Asif, Z. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, and O.L. Warren, A new view of the onset of plasticity during the nanoindentation of aluminium, Nature Mater. 5(9) (2006), p. 697. doi: 10.1038/nmat1714
  • A.M. Minor, J.W. Morris, and E.A. Stach, Quantitative in situ nanoindentation in an electron microscope, Appl. Phys. Lett. 79(11) (2001), pp. 1625–1627. doi: 10.1063/1.1400768
  • J. Knap and M. Ortiz, Effect of indenter-radius size on Au (001) nanoindentation, Phys. Rev. Lett. 90(22) (2003), p. 226102. doi: 10.1103/PhysRevLett.90.226102
  • T. Tsuru and Y. Shibutani, Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu, Phys. Rev. B 75(3) (2007), p. 035415. doi: 10.1103/PhysRevB.75.035415
  • M. Dan, M. Kazakevich, D.J. Srolovitz, and E. Rabkin, Nanoindentation size effect in single-crystal nanoparticles and thin films: A comparative experimental and simulation study, Acta Mater. 59(6) (2011), pp. 2309–2321. doi: 10.1016/j.actamat.2010.12.027
  • I. Salehinia and D.F. Bahr, The impact of a variety of point defects on the inception of plastic deformation in dislocation-free metals, Scripta Mater. 66(6) (2012), pp. 339–342. doi: 10.1016/j.scriptamat.2011.11.028
  • B. Wang, Y. Gao, and H.M. Urbassek, Microstructure and magnetic disorder induced by nanoindentation in single-crystalline Fe, Phys. Rev. B 89(10) (2014), pp. 106–112. doi: 10.1103/PhysRevB.89.104105
  • R. Kositski and M. Dan, Depinning-controlled plastic deformation during nanoindentation of bcc iron thin films and nanoparticles, Acta Mater. 90(2) (2015), pp. 370–379. doi: 10.1016/j.actamat.2015.03.010
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1) (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • C.A. Becker, Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu, Phil. Mag. 88(12) (2008), pp. 1723–1750. doi: 10.1080/14786430802206482
  • Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B 63(22) (2001), p. 3076. doi: 10.1103/PhysRevB.63.224106
  • S.M. Foiles, M.I. Baskes, and M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33(12) (1986), pp. 7983–7991. doi: 10.1103/PhysRevB.33.7983
  • M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta, Development of new interatomic potentials appropriate for crystalline and liquid iron, Phil. Mag. 83 (2003), pp. 3977–3994. doi: 10.1080/14786430310001613264
  • R. Ravelo, Q. An, T.C. Germann, and B.L. Holian, Large-scale molecular dynamics simulations of shock-induced plasticity in tantalum single crystals, Phys. Rev. B 88 (2013), p. 134101. doi: 10.1103/PhysRevB.88.134101
  • K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.
  • X. Zhou, B. Ouyang, W.A. Curtin, and J. Song, Atomistic investigation of the influence of hydrogen on dislocation nucleation during nanoindentation in Ni and Pd, Acta Mater. 116 (2016), pp. 364–369. doi: 10.1016/j.actamat.2016.06.061
  • B. Wang, Y. Gao, and H.M. Urbassek, Microstructure and magnetic disorder induced by nanoindentation in single-crystalline Fe, Phys. Rev. B 89 (2014), p. 104105.
  • P. Hansson, Influence of surface roughening on indentation behavior of thin copper coatings using a molecular dynamics approach, Comput. Mater. Sci. 117 (2016), pp. 233–239. doi: 10.1016/j.commatsci.2016.01.042
  • A. Stukowski, Visualization and analysis of atomistic simulation data with ovito-the open visualization tool, Model. Simul. Mater. Sci. Eng. 18(6) (2010), pp. 2154–2162.
  • R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Material, Jony Wiley, New York, 1976.
  • S. Traiviratana, E.M. Bringa, D.J. Benson, and M.A. Meyers, Void growth in metals: Atomistic calculations, Acta Mater. 56 (2008), pp. 3874–3886. doi: 10.1016/j.actamat.2008.03.047
  • M. A. Meyers and K. K. Chawla, Mechanical behavior of materials. 2nd ed. Cambridge University Press, Cambridge, 2009.
  • C. Mi, D.A. Buttry, P. Sharma, and D.A. Kouris, Atomistic insights into dislocation-based mechanisms of void growth and coalescence, J. Mech. Phys. Solids 59 (2011), pp. 1858–1871. doi: 10.1016/j.jmps.2011.05.008
  • S. Jiao, W. Tu, P. Zhang, Z. Wei, L. Qin, Z. Sun, and C. Jian, Atomistic insights into the prismatic dislocation loop on Al (1 0 0) during nanoindentation investigated by molecular dynamics, Comput. Mater. Sci. 143 (2018), pp. 384–390. doi: 10.1016/j.commatsci.2017.11.031
  • Y. Gao, C.J. Ruestes, D.R. Tramontina, and H.M. Urbassek, Comparative simulation study of the structure of the plastic zone produced by nanoindentation, J. Mech. Phys. Solids 75 (2015), pp. 58–75. doi: 10.1016/j.jmps.2014.11.005
  • C.J. Ruestes, A. Stukowski, Y. Tang, D.R. Tramontina, P. Erhart, B.A. Remington, H.M. Urbassek, M.A. Meyers, and E.M. Bringa, Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution, Mater. Sci. Eng. A 613 (2014), pp. 390–403. doi: 10.1016/j.msea.2014.07.001
  • Y. Gao, C.J. Ruestes, and H.M. Urbassek, Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions, Comput. Mater. Sci. 90 (2014), pp. 232–240. doi: 10.1016/j.commatsci.2014.04.027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.