124
Views
11
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The electronic properties and electron transport of sawtooth penta-graphene nanoribbon under uniaxial strain: ab-initio study

, ORCID Icon & ORCID Icon
Pages 1834-1848 | Received 06 Dec 2019, Accepted 18 Feb 2020, Published online: 17 Mar 2020

References

  • M.J. Allen, V.C. Tung, and R.B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110(1) (2009), pp. 132–145.
  • N.T. Tien, V.T. Phuc, and R. Ahuja, Tuning electronic transport properties of zigzag graphene nanoribbons with silicon doping and phosphorus passivation, AIP. Adv. 8(8) (2018), p. 085123 (12p).
  • Z. Wang, F. Dong, B. Shen, R. Zhang, Y. Zheng, L. Chen, S. Wang, C. Wang, K. Ho, Y.-J. Fan, and B.Y. Jin, Electronic and optical properties of novel carbon allotropes, Carbon 101 (2016), pp. 77–85.
  • J. Wang, Z. Liu, and Z. Liu, First-principles study of the transport behavior of zigzag graphene nanoribbons tailored by strain, AIP. Adv. 2(1) (2012), p. 012103 (7p).
  • N.T. Tien, N.N.T. Hung, T.T. Nguyen, and P.T.B. Thao, Linear intersubband optical absorption in the semiparabolic quantum wells based on AIN/AIGaN/AIN under a uniform electric field, Physica B Condensed Matter 519 (2017), pp. 63–68.
  • N.T. Tien, N.V. Ut, B.T. Hoc, T.T.N. Thao, and N.D. Khanh, Electronic transport in the v-shaped edge distorted zigzag graphene nanoribbons with substitutional doping. Adv. Condensed Matt. Phys 2019(4715953) (2019), pp. 1–8. doi:10.1155/2019/4715953.
  • M. Lee, H. Chung, J. Lu, C. Chang, and M.-F. Lin, Electronic and optical properties in graphane, Philos. Mag. 95(24) (2015), pp. 2717–2730.
  • K. Novoselov, Graphene: Mind the gap, Nat. Mater. 6(10) (2007), pp. 720–721.
  • Z.-S. Wu, W. Ren, L. Gao, B. Liu, J. Zhao, and H.-M. Cheng, Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets, Nano. Res. 3(1) (2010), pp. 16–22.
  • H.-C. Chung, C.-P. Chang, C.-Y. Lin, and M.-F. Lin, Electronic and optical properties of graphene nanoribbons in external fields, Phys. Chem. Chem. Phys. 18(11) (2016), pp. 7573–7616.
  • T. Li, Y. Huang, M.-F. Lin, and S. Chang, Conductance of bilayer graphene nanoribbons with different widths, Philos. Mag. 90(23) (2010), pp. 3177–3187.
  • S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Nat. Acad. Sci. 112(8) (2015), pp. 2372–2377.
  • B. Rajbanshi, S. Sarkar, B. Mandal, and P. Sarkar, Energetic and electronic structure of penta-graphene nanoribbons, Carbon 100 (2016), pp. 118–125.
  • N.T. Tien, P.T.B. Thao, V.T. Phuc, and A. Rajeev, Electronic and transport features of sawtooth penta-graphene nanoribbons via substitutional doping, Physica E: Low-dimensional Sys. Nanostruct. 114 (2019), p. 113572 (10p).
  • Z.G. Yu and Y.-W. Zhang, A comparative density functional study on electrical properties of layered penta-graphene, J. Appl. Phys. 118(16) (2015), p. 165706 (7p).
  • M. Chen, H. Zhan, Y. Zhu, H. Wu, and Y. Gu, Mechanical properties of penta-graphene nanotubes, J. Phys. Chem. C 121(17) (2017), pp. 9642–9647.
  • P. Yuan, Z. Zhang, Z. Fan, and M. Qiu, Electronic structure and magnetic properties of penta-graphene nanoribbons, Phys. Chem. Chem. Phys. 19(14) (2017), pp. 9528–9536.
  • M. Shahrokhi, Tuning the band gap and optical spectra of monolayer penta-graphene under in-plane biaxial strains, Optik 136 (2017), pp. 205–214.
  • D. Muoi, N.N. Hieu, H.T. Phung, H.V. Phuc, B. Amin, B.D. Hoi, N.V. Hieu, L.C. Nhan, C.V. Nguyen, and P. Le, Electronic properties of WS2 and WSe2 monolayers with biaxial strain: A first-principles study, Chem. Phys. 519 (2019), pp. 69–73.
  • D.Q. Khoa, C.V. Nguyen, H.V. Phuc, V.V. Ilyasov, T.V. Vu, N.Q. Cuong, B.D. Hoi, D.V. Lu, E. Feddi, M. El-Yadri, and M. Farkous., Effect of strains on electronic and optical properties of monolayer SnS: Ab-initio study, Physica B: Condensed Matt. 545 (2018), pp. 255–261.
  • J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B. 63(24) (2001), p. 245407 (13p).
  • M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B. 65(16) (2002), p. 165401 (18p).
  • R. Landauer, Conductance as a consequence of incident flux, IBM J. Res. Develop. 1 (1957), pp. 223.
  • S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, United Kingdom, 1997.
  • L. Sun, Q. Li, H. Ren, H. Su, Q. Shi, and J. Yang, Strain effect on electronic structures of graphene nanoribbons: A first-principles study, J. Chem. Phys. 129(7) (2008), p. 074704 (6p).
  • S. Bravo, J. Correa, L. Chico, and M. Pacheco, Tight-binding model for opto-electronic properties of penta-graphene nanostructures, Sci. Rep. 8(1) (2018), p. 11070 (9p).
  • H. Mei, Z. Yong, and Z. Hong-Bo, Effect of uniaxial strain on band gap of armchair-edge graphene nanoribbons, Chinese Phys Lett. 27(3) (2010), p. 037302 (4p).
  • Y. Zhang, X. Wu, Q. Li, and J. Yang, Tunable band gap of graphane nanoribbons under uniaxial elastic strain: A first-principles study. Available at arXiv preprint arXiv:1111.6336.
  • M. Topsakal and S. Ciraci, Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study, Phys. Rev. B 81(2) (2010), p. 024107 (7p).
  • Z. Li, H. Qian, J. Wu, B.-L. Gu, and W. Duan, Role of symmetry in the transport properties of graphene nanoribbons under bias, Phys. Rev. Lett. 100(20) (2008), p. 206802 (4p).
  • M. Topsakal, V. Bagci, and S. Ciraci, Current-voltage (i–v) characteristics of armchair graphene nanoribbons under uniaxial strain, Phys. Rev. B. 81(20) (2010), p. 205437 (5p).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.