183
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Strain-tunable electronic, elastic, and optical properties of CaI2 monolayer: first-principles study

, , , &
Pages 1982-2000 | Received 31 Aug 2019, Accepted 29 Mar 2020, Published online: 17 Apr 2020

References

  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306 (2004), pp. 666–669. doi: 10.1126/science.1102896
  • Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7 (2012), pp. 699–712. doi: 10.1038/nnano.2012.193
  • L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: A promising optical Kerr media with enhanced stability. Adv. Opt. Mater. 5 (2017), pp. 1700301. doi: 10.1002/adom.201700301
  • S.J. Kim, K. Choi, B. Lee, Y. Kim, and B.H. Hong, Materials for flexible, stretchable electronics: Graphene and 2D materials. Rev. Mater. Res. 45 (2015), pp. 63–84. doi: 10.1146/annurev-matsci-070214-020901
  • M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5 (2013), pp. 263–275. doi: 10.1038/nchem.1589
  • A. Bablich, S. Kataria, and M. Lemme, Graphene and two-dimensional materials for optoelectronic applications. Electronics. 5 (2016), pp. 13. doi: 10.3390/electronics5010013
  • B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, and H. Zhu, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J. Mater. Chem. C. 4 (2016), pp. 3592–3598. doi: 10.1039/C6TC00115G
  • H. Ozisik, K. Colakoglu, H.B. Ozisik, and E. Deligoz, Structural, elastic, and lattice dynamical properties of germanium diiodide (GeI2). Comp. Mater. Sci. 50 (2010), pp. 349–355. doi: 10.1016/j.commatsci.2010.08.026
  • M. Zhou, W. Duan, Y. Chen, and A. Du, Single layer lead iodide: Computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spin-orbital-coupling. Nanoscale. 7 (2015), pp. 15168–15174. doi: 10.1039/C5NR04431F
  • S. Wang, C. Ren, H. Tian, J. Yu, and M. Sun, Mos2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study. Chem. Phys. 20 (2018), pp. 13394–13399.
  • M. Sun, Q. Ren, S. Wang, J. Yu, and W. Tang, Electronic properties of Janus silicene: New direct band gap semiconductors. J. Phys. D Appl. Phys. 49 (2016), pp. 445305. doi: 10.1088/0022-3727/49/44/445305
  • C. Ren, B. Zhou, M. Sun, S. Wang, Y. Li, H. Tian, and W. Lu, Chiral filtration-induced spin/valley polarization in silicene line defects. Appl. Phys. Exp. 11 (2018), pp. 063006. doi: 10.7567/APEX.11.063006
  • Q. Peng, W. Ji, and S. De, Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study. Comp. Mater. Sci. 56 (2012), pp. 11–17. doi: 10.1016/j.commatsci.2011.12.029
  • G. Gao, A.P. O’Mullane, and A. Du, 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7 (2016), pp. 494–500. doi: 10.1021/acscatal.6b02754
  • J. Dai, X. Wu, J. Yang, and X.C. Zeng, Unusual metallic microporous boron nitride networks. J. Phys. Chem. Lett. 4 (2013), pp. 3484–3488. doi: 10.1021/jz4018877
  • K. Chang, T.P. Kaloni, H. Lin, A. Bedoya-Pinto, A.K. Pandeya, I. Kostanovskiy, K. Zhao, Y. Zhong, X. Hu, Q.K. Xue, X. Chen, S.H. Ji, S. Barraza-Lopez, and S.S.P. Parkin, Enhanced spontaneous polarization in ultrathin SnTe films with layered antipolar structure. Adv. Mater. 31 (2019), pp. 1804428. doi: 10.1002/adma.201804428
  • A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81 (2009), pp. 109–162. doi: 10.1103/RevModPhys.81.109
  • R.C. Andrew, R.E. Mapasha, A.M. Ukpong, and N. Chetty, Mechanical properties of graphene and boronitrene. Phys. Rev. B. 85 (2012), pp. 125428. doi: 10.1103/PhysRevB.85.125428
  • B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2 (2017), pp. 1–17. doi: 10.1038/natrevmats.2016.98
  • J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido and N. Mingo, Two-dimensional phonon transport in supported graphene. Science 328 (2010), pp. 213–216. doi: 10.1126/science.1184014
  • J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith and I.V. Shvets, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331 (2011), pp. 568–571. doi: 10.1126/science.1194975
  • V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, and J.N. Coleman, Liquid exfoliation of layered materials. Science 340 (2013), pp. 1420. doi: 10.1126/science.1226419
  • S. Lebègue, T. Björkman, M. Klintenberg, R.M. Nieminen, and O. Eriksson, Two-dimensional materials from data filtering and ab initio calculations. Phys. Rev. X. 3 (2013), pp. 031002.
  • M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113 (2013), pp. 3766–3798. doi: 10.1021/cr300263a
  • A.V. Novoselova, M.K. Todriya, I.N. Odin, and B.A. Popovkin, Study of the GeS-GeI2 system. Inorg. Mater. 7 (1971), pp. 1125.
  • H. Blum, The crystal structure of water-free magnesium iodide and calcium iodide. Z. Phys. Chem. Abt. B. 22 (1933), pp. 298–304.
  • M.A. Brogan, A.J. Blake, C. Wilson, and D.H. Gregory, Magnesium diiodide, MgI2. Acta Crystallogr. C. 59 (2003), pp. 136. doi: 10.1107/S0108270103025769
  • M.A. Einarsrud, H. Justnes, E. Rytter, and H.A. Oye, Structure and stability of solid and molten complexes in the MgCl2-AlCl3 system. Polyhedron 6 (1987), pp. 975. doi: 10.1016/S0277-5387(00)80942-0
  • X.H. Zhu, B.J. Zhao, S.F. Zhu, Y.R. Jin, Z.Y. He, J.J. Zhang, and Y. Huang, Synthesis and characterization of PbI2 polycrystals. Cryst. Res. Technol. 41 (2006), pp. 239. doi: 10.1002/crat.200510567
  • R.M. Bozorth, The crystal structure of cadmium iodide. J. Am. Chem. Soc. 44 (1922), pp. 2232. doi: 10.1021/ja01431a019
  • H.M. Powell, and F.M. Brewer, The structure of germanous iodide. J. Chem. Soc. (1938), pp. 197. doi: 10.1039/jr9380000197
  • F. Lu, W. Wang, X. Luo, X. Xie, Y. Cheng, H. Dong, H. Liu, and W.-H. Wang, A class of monolayer metal halogenides MX2: electronic structures and band alignments. Appl. Phys. Lett. 108 (2016), pp. 132104. doi: 10.1063/1.4945366
  • R. Hofstadter, E.W. O’Dell, and C.T. Schmidt, Cal2 and CaI2(Eu) scintillation crystals. IEEE Trans. Nucl. Sci. 11 (1964), pp. 12. doi: 10.1109/TNS.1964.4323397
  • G. Kresse, and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54 (1996), pp. 11169–11186. doi: 10.1103/PhysRevB.54.11169
  • G. Kresse, and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6 (1996), pp. 15–50. doi: 10.1016/0927-0256(96)00008-0
  • P.E. Blochl, Projector augmented-wave method. Phys. Rev. B. 50 (1994), pp. 17953–17979. doi: 10.1103/PhysRevB.50.17953
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • H.J. Monkhorst, and J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B. 13 (1976), pp. 5188–5192. doi: 10.1103/PhysRevB.13.5188
  • M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B. 73 (2006), pp. 045112. doi: 10.1103/PhysRevB.73.045112
  • P. Ravindran, A. Delin, B. Johansson, O. Eriksson, and J.M. Wills, Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2. Phys. Rev. B. 59 (1999), pp. 1776. doi: 10.1103/PhysRevB.59.1776
  • F. Mouhat, and F. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 90 (2014), pp. 224104. doi: 10.1103/PhysRevB.90.224104
  • D.M. Hoat, T.V. Vu, M.M. Obeid, and H.R. Jappor, Tuning the electronic structure of 2D materials by strain and external electric field: Case of GeI2 monolayer. Chem. Phys. 527 (2019), pp. 110499. doi: 10.1016/j.chemphys.2019.110499
  • C.Y. Zhang, and M. Yu, Theoretical prediction of sandwiched two-dimensional phosphide binary compound sheets with tunable bandgaps and anisotropic physical properties. Nanotechnology 29 (2018), pp. 095703. doi: 10.1088/1361-6528/aaa63b
  • Y.-S. Lan, Q. Lu, C.-E. Hu, X.-R. Chen, and Q.-F. Chen, Strain-modulated mechanical, electronic, and thermal transport properties of two-dimensional PdS2 from first-principles investigations. Appl. Phys. 125 (2019), pp. 33. doi: 10.1007/s00339-018-2311-0
  • D. J. Singh, Structure and optical properties of high light output halide scintillators. Phys. Rev. B. 82 (2010), p. 155145. doi: 10.1103/PhysRevB.82.155145

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.