217
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Texture transition in Al–Mg alloys: effect of magnesium

, , & ORCID Icon
Pages 2143-2164 | Received 10 Oct 2019, Accepted 17 Apr 2020, Published online: 26 May 2020

References

  • W.B. H, Deformation substructures and recrystallisation. Mater. Sci. Forum 558 (2007), pp. 13–22.
  • O. Engler and J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—a review. Mater. Sci. Eng. A 336 (2002), pp. 249–262. doi: 10.1016/S0921-5093(01)01968-2
  • L. Toth, J. Hirsch, and P. Van Houtte, On the role of texture development in the forming limits of sheet metals. Int. J. Mech. Sci 38 (1996), pp. 1117–1126. doi: 10.1016/0020-7403(95)00110-7
  • P.D. Wu, K.W. Neale, E. Van der Giessen, M. Jain, S.R. MacEwen, and A. Makinde, Crystal plasticity forming limit diagram analysis of rolled aluminum sheets. Metall. Mater. Trans. A 29 (1998), pp. 527–535. doi: 10.1007/s11661-998-0134-x
  • F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, London, 2004.
  • J. Hu, K. Ikeda, and T. Murakami, Effect of texture components on plastic anisotropy and formability of aluminium alloy sheets. J. Mater. Process. Technol. 73 (1998), pp. 49–56. doi: 10.1016/S0924-0136(97)00211-2
  • J. Savoie, M. Jain, A.R. Carr, P.D. Wu, K.W. Neale, Y. Zhou, and J.J. Jonas, Predictions of forming limit diagrams using crystal plasticity models. Mater. Sci. Eng. A 257 (1998), pp. 128–133. doi: 10.1016/S0921-5093(98)00830-2
  • Y. Zhou and K. Neale, Predictions of forming limit diagrams using a rate-sensitive crystal plasticity model. Int. J. Mech. Sci. 37 (1995), pp. 1–20. doi: 10.1016/0020-7403(94)00052-L
  • J.D. Bryant, A. Beaudoin, and R. VanDyke, The effect of crystallographic texture on the formability of AA 2036 autobody sheet. SAE Transact. (1994), pp. 49–57.
  • B.J. Duggan, M. Hatherly, W.B. Hutchinson, and P.T. Wakefield, Deformation structures and textures in cold-rolled 70: 30 brass. Met. Sci. 12 (1978), pp. 343–351. doi: 10.1179/030634578790433909
  • J. Hirsch, K. Lücke, and M. Hatherly, Overview no. 76: mechanism of deformation and development of rolling textures in polycrystalline fcc Metals-III, The influence of slip inhomogeneities and twinning. Acta Metall. 36 (1988), pp. 2905–2927. doi: 10.1016/0001-6160(88)90174-5
  • R. Madhavan, R. Ray, and S. Suwas, Texture transition in cold-rolled nickel–40wt.% cobalt alloy. Acta Mater. 74 (2014), pp. 151–164. doi: 10.1016/j.actamat.2014.03.066
  • T. Leffers and R. Ray, The brass-type texture and its deviation from the copper-type texture. Prog. Mater. Sci. 54 (2009), pp. 351–396. doi: 10.1016/j.pmatsci.2008.09.002
  • R. Madhavan, R. Ray, and S. Suwas, Micro-mechanical aspects of texture evolution in nickel and nickel–cobalt alloys: role of stacking fault energy. Philos. Mag. 96 (2016), pp. 3177–3199. doi: 10.1080/14786435.2016.1229061
  • R. Kalsar and S. Suwas, Evolution of texture in some Mn Steel. Adv. High Strength Steel (2018), pp. 49–58. doi: 10.1007/978-981-10-7892-7_6
  • J. Hirsch and K. Lücke, Overview no. 76: mechanism of deformation and development of rolling textures in polycrystalline fcc metals-II. simulation and interpretation of experiments on the basis of Taylor-type theories. Acta Metall. 36 (1988), pp. 2883–2904. doi: 10.1016/0001-6160(88)90173-3
  • J. Hirsch and K. Lücke, Overview no. 76: mechanism of deformation and development of rolling textures in polycrystalline fcc metals-I. description of rolling texture development in homogeneous CuZn alloys. Acta Metall. 36 (1988), pp. 2863–2882. doi: 10.1016/0001-6160(88)90172-1
  • R. Kalsar, R.K. Ray, and S. Suwas, Effects of alloying addition on deformation mechanisms, microstructure, texture and mechanical properties in Fe-12Mn-0.5C austenitic steel. Mater. Sci. Eng. A 729 (2018), pp. 385–397. doi: 10.1016/j.msea.2018.05.071
  • P. Wagner, O. Engler, and K. Lücke, Formation of Cu-type shear bands and their influence on deformation and texture of rolled fcc {112}< 111> single crystals. Acta Metall. Mater. 43 (1995), pp. 3799–3812. doi: 10.1016/0956-7151(95)90164-7
  • R. Madhavan, R. Ray, and S. Suwas, New insights into the development of microstructure and deformation texture in nickel–60 wt.% cobalt alloy. Acta Mater. 78 (2014), pp. 222–235. doi: 10.1016/j.actamat.2014.06.031
  • R. Kalsar and S. Suwas, Deformation mechanisms during large strain deformation of high Mn TWIP steel. Mater. Sci. Eng. A 700 (2017), pp. 209–219. doi: 10.1016/j.msea.2017.05.039
  • R. Kalsar, P. Khandal, and S. Suwas, Effects of stacking fault energy on deformation mechanisms in Al-added medium Mn TWIP Steel. Metall. Mater. Trans. A 50 (2019), pp. 3683–3696. doi: 10.1007/s11661-019-05274-1
  • M. Liu, H.J. Roven, M. Murashkin, and R.Z. Valiev, Structural characterization by high-resolution electron microscopy of an Al–Mg alloy processed by high-pressure torsion. Mater. Sci. Eng. A 503 (2009), pp. 122–125. doi: 10.1016/j.msea.2008.02.053
  • X. Yang, S. Ni, and M. Song, Partial dislocation emission in a superfine grained Al–Mg alloy subject to multi-axial compression. Mater. Sci. Eng. A 641 (2015), pp. 189–193. doi: 10.1016/j.msea.2015.05.098
  • O. Engler, Deformation and texture of copper–manganese alloys. Acta Mater. 48 (2000), pp. 4827–4840. doi: 10.1016/S1359-6454(00)00272-X
  • K. Morii, H. Mecking, and Y. Nakayama, Development of shear bands in fcc single crystals. Acta Metall. 33 (1985), pp. 379–386. doi: 10.1016/0001-6160(85)90080-X
  • M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, and H.J. Roven, Microstructure evolution and mechanical behavior of a binary Al–7Mg alloy processed by equal-channel angular pressing. Acta Mater. 84 (2015), pp. 42–54. doi: 10.1016/j.actamat.2014.10.025
  • M. Zha, X.-T. Meng, H.-M. Zhang, X.-H. Zhang, H.-L. Jia, Y.-J. Li, J.-Y. Zhang, H.-Y. Wang, and Q.-C. Jiang, High strength and ductile high solid solution Al–Mg alloy processed by a novel hard-plate rolling route. J. Alloys Compd 728 (2017), pp. 872–877. doi: 10.1016/j.jallcom.2017.09.017
  • B.-H. Lee, S.-H. Kim, J.-H. Park, H.-W. Kim, and J.-C. Lee, Role of Mg in simultaneously improving the strength and ductility of Al–Mg alloys. Mater. Sci. Eng. A 657 (2016), pp. 115–122. doi: 10.1016/j.msea.2016.01.089
  • Y.J. Chen, Y.C. Chai, H.J. Roven, S.S. Gireesh, Y.D. Yu, and J. Hjelen, Microstructure and mechanical properties of Al–xMg alloys processed by room temperature ECAP. Mater. Sci. Eng. A 545 (2012), pp. 139–147. doi: 10.1016/j.msea.2012.03.012
  • O. Engler, J. Hirsch, and K. Lücke, Texture development in Al 1.8 wt% Cu depending on the precipitation state-I. rolling textures. Acta Metall. 37 (1989), pp. 2743–2753. doi: 10.1016/0001-6160(89)90308-8
  • P. Wagner, O. Engler, and K. Lücke, Texture development in Al-3% Mg influenced by shear bands, texture, stress. Microstruct 14 (1991), pp. 927–932. doi: 10.1155/TSM.14-18.927
  • P. McCormick, The Portevin-Le Chatelier effect in an Al-Mg-Si alloy. Acta Metall. 19 (1971), pp. 463–471. doi: 10.1016/0001-6160(71)90170-2
  • T. Morishige, T. Hirata, T. Uesugi, Y. Takigawa, M. Tsujikawa, and K. Higashi, Effect of Mg content on the minimum grain size of Al–Mg alloys obtained by friction stir processing. Scr. Mater. 64 (2011), pp. 355–358. doi: 10.1016/j.scriptamat.2010.10.033
  • L. Schulz, A direct method of determining preferred orientation of a flat reflection sample using a Geiger counter X-ray spectrometer. J. Appl. Phys. 20 (1949), pp. 1030–1033. doi: 10.1063/1.1698268
  • F. Bachmann, R. Hielscher, and H. Schaeben, Texture analysis with MTEX–free and open source software toolbox. Solid State Phenom. 160 (2010), pp. 63–68. doi: 10.4028/www.scientific.net/SSP.160.63
  • C. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas, The relation between macroscopic and microscopic strain hardening in FCC polycrystals. Acta Metall. 32 (1984), pp. 1637–1653. doi: 10.1016/0001-6160(84)90222-0
  • C.N. Tomé and R. Lebensohn. Manual for code visco-plastic self-consistent (VPSC), (2009) Version 7c.
  • C. Tomé, R. Lebensohn, and U. Kocks, A model for texture development dominated by deformation twinning: application to zirconium alloys. Acta Metall. Mater. 39 (1991), pp. 2667–2680. doi: 10.1016/0956-7151(91)90083-D
  • I.J. Beyerlein, L.S. Toth, C.N. Tomé, and S. Suwas, Role of twinning on texture evolution of silver during equal channel angular extrusion. Philos. Mag. 87 (2007), pp. 885–906. doi: 10.1080/14786430601003866
  • A. Korbel and P. Martin, Microscopic versus macroscopic aspect of shear bands deformation. Acta Metall. 34 (1986), pp. 1905–1909. doi: 10.1016/0001-6160(86)90249-X
  • D.A. Hughes and N. Hansen, High angle boundaries formed by grain subdivision mechanisms. Acta Mater. 45 (1997), pp. 3871–3886. doi: 10.1016/S1359-6454(97)00027-X
  • D. Kuhlmann-Wilsdorf, Theory of plastic deformation: properties of low energy dislocation structures. Mater. Sci. Eng. A 113 (1989), pp. 1–41. doi: 10.1016/0921-5093(89)90290-6
  • N. Hansen and D.J. Jensen, Deformation and recrystallization textures in commercially pure aluminum. Metall. Trans. A 17 (1986), pp. 253–259. doi: 10.1007/BF02643901
  • K. Ito, R. Musick, and K. Lücke, The influence of iron content and annealing temperature on the recrystallization textures of high-purity aluminium-iron alloys. Acta Metall. 31 (1983), pp. 2137–2149. doi: 10.1016/0001-6160(83)90033-0
  • D.H. Jang, Y.B. Park, and W.J. Kim, Significant strengthening in superlight Al-Mg alloy with an exceptionally large amount of Mg (13 wt%) after cold rolling. Mater. Sci. Eng. A 744 (2019), pp. 36–44. doi: 10.1016/j.msea.2018.11.132
  • T. Yu, N. Hansen, and X. Huang. Recovery by Triple Junction Motion in Aluminium Deformed to Ultrahigh Strains, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, London, (2011).
  • P. Hurley and F. Humphreys, The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy. Acta Mater. 51 (2003), pp. 1087–1102. doi: 10.1016/S1359-6454(02)00513-X
  • U. Kocks and H. Chandra, Slip geometry in partially constrained deformation. Acta Metall. 30 (1982), pp. 695–709. doi: 10.1016/0001-6160(82)90119-5
  • K. Morii and Y. Nakayama, Shear bands in rolled copper single crystals. Trans. Jpn. Inst. Met. 22 (1981), pp. 857–864. doi: 10.2320/matertrans1960.22.857
  • T. Leffers and J.B. Bilde-Sørensen, Intra-and intergranular heterogeneities in the plastic deformation of brass during rolling. Acta Metall. Mater. 38 (1990), pp. 1917–1926. doi: 10.1016/0956-7151(90)90303-X
  • W.B. Hutchinson, B.J. Duggan, and M. Hatherly, Development of deformation texture and microstructure in cold-rolled Cu–30Zn. Met. Technol. 6 (1979), pp. 398–403. doi: 10.1179/030716979803276598
  • M. Hatherly and A.S. Malin, Shear bands in deformed metals. Scr. Metall. 18 (1984), pp. 449–454. doi: 10.1016/0036-9748(84)90419-8
  • K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, and Z. Horita, Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater. 69 (2014), pp. 68–77. doi: 10.1016/j.actamat.2014.01.036
  • P.C.J. Gallagher, The influence of alloying, temperature, and related effects on the stacking fault energy. Metall. Trans. 9 (1970), pp. 2429–2461.
  • R. Madhavan, R. Kalsar, R.K. Ray, and S. Suwas, Role of stacking fault energy on texture evolution revisited. IOP Conf. Ser.: Mater. Sci. Eng. 82 (2015), pp. 012031. doi: 10.1088/1757-899X/82/1/012031
  • L. Lapeire, J. Sidor, P. Verleysen, K. Verbeken, I. De Graeve, H. Terryn, and L.A.I. Kestens, Texture comparison between room temperature rolled and cryogenically rolled pure copper. Acta Mater. 95 (2015), pp. 224–235. doi: 10.1016/j.actamat.2015.05.035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.