183
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effects of severe-strain-induced defects on the mechanical response of two kinds of high-angle grain boundaries

, , ORCID Icon &
Pages 2365-2385 | Received 28 Feb 2020, Accepted 05 May 2020, Published online: 01 Jun 2020

References

  • L. Priester, Grain Boundaries. From Theory to Engineering, Springer, 2013.
  • T. Watanabe and S. Tsurekawa, The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering. Acta Mater. 47 (1999), pp. 4171–4185. doi: 10.1016/S1359-6454(99)00275-X
  • L. Lim and T. Watanabe, Fracture-toughness and brittle-ductile transition controlled by grain-boundary character distribution (gbcd) in polycrystals. Acta Metal. Mater. 38 (1990), pp. 2507–2516. doi: 10.1016/0956-7151(90)90262-F
  • J. Han, S. Thomas and D. Srolovitz, Grain-boundary kinetics: A unified approach. Prog. Mater. Sci. 98 (2018), pp. 386–476. doi: 10.1016/j.pmatsci.2018.05.004
  • G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed., CRC Press, 2009.
  • H.J. Fecht, Thermodynamic properties and stability of grain boundaries in metals based on the universal equation of state at negative pressure. Acta Metall. Mater. 38 (1990), pp. 1927–1932. doi: 10.1016/0956-7151(90)90304-Y
  • F. Liu and R. Kirchheim, Grain boundary saturation and grain growth. Scr. Mater. 51 (2004), pp. 521–525. doi: 10.1016/j.scriptamat.2004.05.042
  • J.R. Trelewicz and C.A. Schuh, Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B 79 (2009), pp. 094112. doi: 10.1103/PhysRevB.79.094112
  • R. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51 (2006), pp. 881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 61 (2013), pp. 782–817. doi: 10.1016/j.actamat.2012.10.038
  • Y. Amouyal, S. Divinski, Y. Estrin and E. Rabkin, Short-circuit diffusion in an ultrafine grain copper-zirconium alloy produced by equal channel angular pressing. Acta Mater. 55 (2007), pp. 5968–5979. doi: 10.1016/j.actamat.2007.07.026
  • S. Divinski, G. Reglitz, H. Rösner, Y. Estrin and G. Wilde, Self-diffusion in Ni prepared by severe plastic deformation: effect of non-equilibrium grain boundary state. Acta Mater. 59 (2011), pp. 1974–1985. doi: 10.1016/j.actamat.2010.11.063
  • J. Fiebig, S. Divinski, H. Rösner, Y. Estrin and G. Wilde, Diffusion of Ag and Co in ultrafine grained α-Ti deformed by equal channel angular pressing. J. Appl. Phys. 110 (2011), pp. 083514. doi: 10.1063/1.3650230
  • R. Valiev, I. Alexandrov, Y. Zhu and T. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17 (2002), pp. 5–8. doi: 10.1557/JMR.2002.0002
  • X. Sauvage, G. Wilde, S. Divinski, Z. Horita and R. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng. A 540 (2012), pp. 1–12. doi: 10.1016/j.msea.2012.01.080
  • G. Wilde, J. Ribbe, G. Reglitz, M. Wegner, H. Rösner, Y. Estrin, M. Zehetbauer, D. Setman and S. Divinski, Plasticity and grain boundary diffusion at small grain sizes. Adv. Eng. Mater. 12 (2010), pp. 758–764. doi: 10.1002/adem.200900333
  • A. Nazarov, A. Romanov and R. Valiev, Incorporation model for the spreading of extrinsic grain-boundary dislocations. Scripta Metall. Mater 24 (1990), pp. 1929–1934. doi: 10.1016/0956-716X(90)90053-J
  • G. Wilde and S. Divinski, Grain boundaries and diffusion phenomena in severely deformed materials. Mater. Trans. 60 (2019), pp. 1302–1315. doi: 10.2320/matertrans.MF201934
  • G. Reglitz, B. Oberdorfer, N. Fleischmann, J. Kotzurek, S. Divinski, W. Sprengel, G. Wilde and R. Würschum, Combined volumetric, energetic and microstructural defect analysis of ECAP-processed Ni. Acta Mater. 103 (2016), pp. 396–406. doi: 10.1016/j.actamat.2015.10.004
  • S. Divinski, G. Reglitz, I. Golovin and G. Wilde, Effect of heat treatment on diffusion, internal friction, microstructure and mechanical properties of ultrafine grained nickel severely deformed by equal channel angular pressing. Acta Mater. 82 (2015), pp. 11–21. doi: 10.1016/j.actamat.2014.08.064
  • Y. Ivanisenko, R. Valiev and H. Fecht, Grain boundary statistics in nano-structured iron produced by high pressure torsion. Mater. Sci. Eng. A 390 (2005), pp. 159–165. doi: 10.1016/j.msea.2004.08.071
  • N. Peter, T. Frolov, M. Duarte, R. Hadian, C. Ophus, C. Kirchlechner, C. Liebscher and G. Dehm, Segregation-induced nanofaceting transition at an asymmetric tilt grain boundary in copper. Phys. Rev. Lett. 121 (2018), pp. 255502. doi: 10.1103/PhysRevLett.121.255502
  • D.L. Olmsted, S.M. Foiles and E.A. Holm, Survey of computed grain boundary properties in face-centered cubic metals: I. grain boundary energy. Acta Mater. 57 (2009), pp. 3694–3703. doi: 10.1016/j.actamat.2009.04.007
  • S. Ratanaphan, D.L. Olmsted, V.V. Bulatov, E.A. Holm, A.D. Rollett and G.S. Rohrer, Grain boundary energies in body-centered cubic metals. Acta Mater. 88 (2015), pp. 346–354. doi: 10.1016/j.actamat.2015.01.069
  • T. Frolov, S.V. Divinski, M. Asta and Y. Mishin, Effect of interface phase transformations on diffusion and segregation in high-angle grain boundaries. Phys. Rev. Lett. 110 (2013), pp. 255502. doi: 10.1103/PhysRevLett.110.255502
  • M. Daw and M. Baskes, Embedded-atom method – derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29 (1984), pp. 6443–6453. doi: 10.1103/PhysRevB.29.6443
  • K.A. Padmanabhan, Grain boundary sliding controlled flow and its relevance to superplasticity in metals, alloys, ceramics and intermetallics and strain-rate dependent flow in nanostructured materials. J. Mater. Sci. 44 (2009), pp. 2226–2238. doi: 10.1007/s10853-008-3076-1
  • K.A. Padmanabhan, M.R. Basariya and M. Raviathul, A theory of steady state structural superplasticity in different classes of materials: A materials-agnostic analysis. Mater. Sci. Eng. A 744 (2019), pp. 704–715. doi: 10.1016/j.msea.2018.12.086
  • K.A. Padmanabhan, S. Balasivanandha Prabu, R.R. Mulyukov, A. Nazarov, R.M. Imayev and S. Ghosh Chowdhury, Superplasticity: Common Basis for a Near-Ubiquitous Phenomenon, Springer, Berlin, 2018.
  • K.A. Padmanabhan and J. Schlipf, Model for grain boundary sliding and its relevance to optimal structural superplasticity. 1. Theory. Mater. Sci. Technol. 12 (1996), pp. 391–399. doi: 10.1179/026708396790165920
  • T.A. Venkatesh, S.S. Bhattacharya, K.A. Padmanabhan and J. Schlipf, Model for grain boundary sliding and its relevance to optimal structural superplasticity part 4 – experimental verification. Mater. Sci. Technol. 12 (1996), pp. 635–643. doi: 10.1179/mst.1996.12.8.635
  • K.A. Padmanabhan and H. Gleiter, Optimal structural superplasticity in metals and ceramics of microcrystalline- and nanocrystalline-grain sizes. Mater. Sci. Eng. A 381 (2004), pp. 28–38. doi: 10.1016/j.msea.2004.02.054
  • K.A. Padmanabhan and H. Gleiter, A mechanism for the deformation of disordered states of matter. Curr. Opin. Solid State Mater. Sci. 16 (2012), pp. 243–253. doi: 10.1016/j.cossms.2012.05.001
  • Y. Mishin, M. Mehl, D. Papaconstantopoulos, A. Voter and J. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63 (2001), pp. 224106. doi: 10.1103/PhysRevB.63.224106
  • J.W. Cahn, Y. Mishin and A. Suzuki, Coupling grain boundary motion to shear deformation. Acta Mater. 54 (2006), pp. 4953–4975. doi: 10.1016/j.actamat.2006.08.004
  • T. Surholt and C. Herzig, Grain boundary self-diffusion in Cu polycrystals of different purity. Acta Mater. 45 (1997), pp. 3817–3823. doi: 10.1016/S1359-6454(97)00037-2
  • V. Randle, G. Rohrer, H. Miller, M. Coleman and G. Owen, Five-parameter grain boundary distribution of commercially grain boundary engineered nickel and copper. Acta Mater. 56 (2008), pp. 2363–2373. doi: 10.1016/j.actamat.2008.01.039
  • F. Emeis, Evolution of internal interfaces in severely deformed metals: a case study on the Cu-Ni system regarding alloying effects, Ph.D. thesis, University of Münster, Germany, 2018.
  • S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117 (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • M. Tschopp, S. Coleman and D. McDowell, Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals). Integr. Mater. Manuf. Innov. 4 (2015), p. 11. doi: 10.1186/s40192-015-0040-1
  • S. Divinski, G. Reglitz and G. Wilde, Grain boundary self-diffusion in polycrystalline nickel of different purity levels. Acta Mater. 58 (2010), pp. 386–395. doi: 10.1016/j.actamat.2009.09.015
  • D. Prokoshkina, V. Esin, G. Wilde and S. Divinski, Grain boundary width, energy and self-diffusion in nickel: Effect of material purity. Acta Mater. 61 (2013), pp. 5188–5197. doi: 10.1016/j.actamat.2013.05.010
  • D. Wolf, Correlation between energy and volume expansion for grain-boundaries in fcc metals. Scr. Mater. 23 (1989), pp. 1913–1918.
  • D. Wolf, Structure-energy correlation for grain-boundaries in fcc metals. 3. Symmetrical tilt boundaries. Acta Mater. 38 (1990), pp. 781–790. doi: 10.1016/0956-7151(90)90030-K
  • J. Matthews and W. Stobbs, Measurement of lattice displacement across a coincidence grain-boundary. Philos. Mag. 36 (1977), pp. 373–383. doi: 10.1080/14786437708244941
  • B. Oberdorfer, D. Setman, E. Steyskal, A. Hohenwarter, W. Sprengel, M. Zehetbauer, R. Pippan and R. Wurschum, Grain boundary excess volume and defect annealing of copper after high-pressure torsion. Acta Mater. 68 (2014), pp. 189–195. doi: 10.1016/j.actamat.2013.12.036
  • Y. Buranova, H. Rösner, S. Divinski, R. Imlau and G. Wilde, Determination of grain boundary excess free volume from HRTEM images. Acta Mater. 106 (2016), pp. 367–373. doi: 10.1016/j.actamat.2016.01.033
  • C.L. Kelchner, S.J. Plimpton and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58 (1998), pp. 11085–11088. doi: 10.1103/PhysRevB.58.11085
  • C. Herring, The Physics of Powder Metallurgy, McGraw-Hill, New York, 1951.
  • H. Zhang, D. Du and D. Srolovitz, Determination of grain boundary stiffness from molecular dynamics simulation. Appl. Phys. Lett 88 (2006), p. 121927. doi: 10.1063/1.2190449
  • J.J. Hoyt, Z.T. Trautt and M. Upmanyu, Fluctuations in molecular dynamics simulations. Math. Comput. Simul. 80 (2010), pp. 1382–1392. doi: 10.1016/j.matcom.2009.03.012
  • G. Gottstein and L. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, CRC Press, Taylor & Francis, Boca Raton, 2010.
  • A. Karma, Z.T. Trautt and Y. Mishin, Relationship between equilibrium fluctuations and shear-coupled motion of grain boundaries. Phys. Rev. Lett. 109 (2012), p. 095501. doi: 10.1103/PhysRevLett.109.095501
  • Y. Cao, S. Ni, X. Liao, M. Song and Y. Zhu, Structural evolutions of metallic materials processed by severe plastic deformation. Mater. Sci. Eng. R 133 (2018), pp. 1–59. doi: 10.1016/j.mser.2018.06.001
  • Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt and S.X. Mao, Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305 (2004), pp. 654–657. doi: 10.1126/science.1098741
  • T. Yu, D.A. Hughes, N. Hansen and X. Huang, In situ observation of triple junction motion during recovery of heavily deformed aluminum. Acta Mater. 86 (2015), pp. 269–278. doi: 10.1016/j.actamat.2014.12.014
  • X. Liu, R. Hao, S. Mao and S.J. Dillon, Shear strengths of FCC-FCC cube-on-cube interfaces. Scr. Mater. 130 (2017), pp. 178–181. doi: 10.1016/j.scriptamat.2016.11.038
  • B. Mishra, P.K. Jena, B. Ramakrishna, V. Madhu, T.B. Bhat and N.K. Gupta, Effect of tempering temperature, plate thickness and presence of holes on ballistic impact behavior and ASB formation of a high strength steel. Int. J. Impact Eng. 44 (2012), pp. 17–28. doi: 10.1016/j.ijimpeng.2011.12.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.