164
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Probing of mechanical behaviour, quantum mechanism of spin exchange and magnetism of SnV2O4 and SnCr2O4 spinel oxides by DFT

, , , , , & show all
Pages 2759-2771 | Received 01 Mar 2020, Accepted 12 May 2020, Published online: 20 Jun 2020

References

  • R. Masrour, A. Jabar, E.K. Hlil, M. Hamedoun, A. Benyoussef, A. Hourmatallah, A. Rezzouk, K. Bouslykhan, and N. Benzakour, First principle and series expansions calculations of electronic and magnetic properties of Co(Ni)Cr2O4 spinels. J. Magn.Magn. Mater 430 (2017), pp. 89–93. doi: 10.1016/j.jmmm.2017.01.050
  • H.E. Moussaoui, T. Mahfoud, S. Habouti, K.E. Maalam, M.B. Ali, M. Hamedoun, O. Mounkachi, R. Masrour, E.K. Hlil, and A. Benyoussef, Synthesis and magnetic properties of tin spinel ferrites doped manganese. J. Magn. Magn. Mater 405 (2016), pp. 181–186. doi: 10.1016/j.jmmm.2015.12.059
  • P.C.F. Qunbo and C.H.L. Jianchong, High temperature deformation behavior of the TC6 titanium alloy under the uniform DC electric field. J. Alloys. Compnds 489 (2010), pp. 441–444. doi: 10.1016/j.jallcom.2009.09.149
  • M. Hamedoun, R. Masrour, K. Bouslykhane, A. Hourmatallah, and N. Benzakour, Magnetic phase diagram of diluted spinel Zn1−xCuxCr2Se4 system. J. Magn. Magn. Mater 320 (2008), pp. 1431–1435. doi: 10.1016/j.jmmm.2007.11.023
  • R. Masrour, M. Hamedoun, and A. Benyoussef, Magnetic properties of B and AB-spinels Zn1−xMxFe2O4 (M = Ni, Mg) materials. J. Alloys. Compnds 503 (2010), pp. 299–302. doi: 10.1016/j.jallcom.2010.05.024
  • I. Efthimiopoulos, I. Khatri, Z.T.Y. Liu, S.V. Khare, P. Sarin, V. Tsurkan, A. Loidl, D. Zhang, and Y. Wang, Universal link of magnetic exchange and structural behavior under pressure in chromium spinels. Phys. Rev. B 97 (2018), pp. 184435. doi: 10.1103/PhysRevB.97.184435
  • N.W. Grimes, The spinels: versatile materials. Phys. Technol. 6 (1975), pp. 22–27. doi: 10.1088/0305-4624/6/1/I02
  • B. Pacakova, S. Kubickova, A. Reznickova, D. Niznansky, and J. Vejpravova, Spinel ferrite nanoparticles: Correlation of structure and magnetism, magnetic spinels. Mohindar Singh Seehra, Intech Open (2017). DOI: 10.5772/66074.
  • B. Wolin, X. Wang, T. Naibert, S.L. Gleason, G.J. MacDougall, H.D. Zhou, S.L. Cooper, and R. Budakian, Co/Ni multilayers for spintronics: high spin polarization and tunable magnetic anisotropy. Phys. Rev. Mat 2 (2018), pp. 064410.
  • O. Mounkachi, M. Hamedoun, M. Belaiche, A. Benyoussef, R. Masrour, H.E. Moussaoui, and M. Sajieddin, Synthesis and magnetic properties of ferrites spinels MgxCu1−xFe2O4. Physica B 407 (2012), pp. 27–32. doi: 10.1016/j.physb.2011.09.023
  • R. Masrour, M. Hamedoun, and A. Benyoussef, Magnetic properties of MnCr2O4 nanoparticle. J. Magn. Magn. Mater 322 (2010), pp. 301–304. doi: 10.1016/j.jmmm.2009.08.051
  • R. Masrour, M. Hamedoun, K. Bouslykhane, A. Hourmatallah, N. Benzakour, A. Benyoussef, and M. Bousmin, Study of magnetic properties of Mn1−xCuxCr2S4 by: high-temperature series expansions. J. Phys. Chem. Solids 69 (2008), pp. 2928–2931. doi: 10.1016/j.jpcs.2008.08.008
  • M.B. Ali, O. Mounkachi, K.E. Maalam, H.E. Moussaoui, M. Hamedoun, E.K. Hlil, D. Fruchart, R. Masroure, and A. Benyoussef, Coexistence of blocked, metamagnetic and canted ferrimagntic phases at high temperature in Co-Nd ferrite nanorods. Superlattices Microstruct. 84 (2015), pp. 165–169. doi: 10.1016/j.spmi.2015.05.002
  • M.B. Ali, K.E. Maalam, H.E. Moussaoui, O. Mounkachi, M. Hamedoun, R. Masrour, E.K. Hlil, and A. Benyoussef, Effect of zinc concentration on the structural and magnetic properties of mixed Co-Zn ferrites nanoparticles synthesized by sol/gel method. J. Magn. Magn. Mater 398 (2016), pp. 20–25. doi: 10.1016/j.jmmm.2015.08.097
  • K.E. Maalam, M.B. Ali, H.E. Moussaoui, O. Mounkachi, M. Hamedoun, R. Masrour, E.K. Hlil, and A. Benyoussef, Magnetic properties of tin ferrites nanostructures doped with transition metal. J. Alloys. Compnds 622 (2015), pp. 761–764. doi: 10.1016/j.jallcom.2014.10.152
  • J.H. Lee, J. Ma, S.E. Hahn, H.B. Cao, M. Lee, T. Hong, H.J. Lee, M.S. Yeom, S. Okamoto, H.D. Zhou, M. Matsuda, and R.S. Fishman, Magnetic Frustration Driven by Itinerancy in spinel CoV2O4. Sci. Rep. 7 (2017), pp. 17129. doi: 10.1038/s41598-017-17160-0
  • H. Takagi and S. Niitaka, Introduction to frustrated magnetism. X 164 (2010), pp. 155–175.
  • A.S. Wills, N.P. Raju, C. Morin, and J.E. Greedan, Two-dimensional short-range magnetic order in the tetragonal spinel Li2Mn2O4. Chem. Mater. 11 (1999), pp. 1936–1941. doi: 10.1021/cm990175b
  • B. Wilfong, X. Zhou, H. Vivanco, D.J. Campbell, K. Wang, D. Graf, J. Paglione, and E. Rodriguez, Frustrated magnetism in the tetragonal CoSe analog of superconducting FeSe. Phys. Rev. B 97 (2018), pp. 104408. doi: 10.1103/PhysRevB.97.104408
  • L. Balents, Spin liquids in frustrated magnets. Nature 464 (2010), pp. 199–208. doi: 10.1038/nature08917
  • C. Kant, J. Deisenhofer, V. Tsurkan, and A. Loidl, Magnetic susceptibility of the frustrated spinels ZnCr2O4, MgCr2O4 and CdCr2O4. J. Phys. Conf. Series (Online) 200 (3) (2010), pp. 032032. doi: 10.1088/1742-6596/200/3/032032
  • S.F. Mansour and M.A. Elkestawy, A comparative study of electric properties of nano-structured and bulk Mn–Mg spinel ferrite. Ceram. Int. 37 (2011), pp. 1175–1180. doi: 10.1016/j.ceramint.2010.11.038
  • H.E. moussaoui, O. Mounkachi, R. Masrour, M. Hamedoun, E.K. Hlil, and A. Benyoussef, Synthesis and super-paramagnetic properties of neodymium ferrites nanorods. J. Alloys. Compnds 581 (2013), pp. 776–781. doi: 10.1016/j.jallcom.2013.07.139
  • J. Neugebauer and T. Hickel, Density functional theory in materials science. Comput. Mol. Sci 3 (2013), pp. 438–448. doi: 10.1002/wcms.1125
  • R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi, and H.E. Moussaoui, Electronic and magnetic structures of Fe3O4 ferrimagnetic investigated by first principle, mean field and series expansions calculations. J. Magn. Magn. Mater 378 (2015), pp. 37–40. doi: 10.1016/j.jmmm.2014.10.135
  • T. Zhang, P. Wojtal, O. Rubel, and I. Zhitomirsky, Density functional theory and experimental studies of caffeic acid adsorption on zinc oxide and titanium dioxide nanoparticles. RSC Adv. 5 (2015), pp. 106877–106885. doi: 10.1039/C5RA21511K
  • J.S. Smith, O. Isayev, and A.E. Roitberg, An extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8 (2017), pp. 3192–3203. doi: 10.1039/C6SC05720A
  • N. Zhao, Y.F. Zhu, and Q. Jiang, Novel electronic properties of two-dimensional AsxSby alloys studied using DFT. J. Mater. Chem. C 6 (2018), pp. 2854–2861. doi: 10.1039/C8TC00079D
  • O.N.C. Uwakweh, R.P. Moyet, R. Mas, C. Morales, P. Vargas, J. Silva, Á Rossa, and N. Lopez, Mössbauer spectroscopy study of the synthesis of SnFe2O4 by high energy ball milling (HEBM) of SnO and α-Fe2O3. J. Phys.: Conf. Series 217 (2010), pp. 012087.
  • O. Mounkachi, M. Hamedoun, and A. Benyoussef, Electronic and magnetic properties of SnFe2O4 spinel ferrites. J. Supercond. Novel. Magn 30 (2017), pp. 3035–3038. doi: 10.1007/s10948-017-4138-x
  • Q. Mahmood, M. Hassan, S.H.A. Ahmad, K.C. Bhamu, and S.M. Ramay, Study of electronic, magnetic and thermoelectric properties of AV2O4 (A = Zn, Cd, Hg) by using DFT approach. J. Phys. Chem.Solids 128 (2019), pp. 283–290. doi: 10.1016/j.jpcs.2017.08.007
  • A. Shokri, S.F. Shayesteh, and K. Boustani, The role of Co ion substitution in SnFe2O4 spinel ferrite nanoparticles: study of structural, vibrational, magnetic and optical properties. Ceram. Int. 44 (2018), pp. 22092–22101. doi: 10.1016/j.ceramint.2018.08.319
  • P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 K, An Augmented Plane Wave + local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universitat Wien, Austria, 2001.
  • P. Blaha, K. Schwarz, P. Sorantin, and S.K. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun 59 (1990), pp. 339. doi: 10.1016/0010-4655(90)90187-6
  • F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semi local exchange-correlation potential. Phys. Rev. Lett 102 (2009), pp. 226401. doi: 10.1103/PhysRevLett.102.226401
  • D. Koller, F. Tran, and P. Blaha, Merits and limits of the modified Becke-Johnson exchange potential. Phys. Rev. B 83 (2011), pp. 195134. doi: 10.1103/PhysRevB.83.195134
  • G.K.H. Madsen, K. Schwarz, and D.J. Singh, Boltztrap. A code for calculating band-structure dependent quantities. Comp. Phys. Comm 175 (2006), pp. 67–71. doi: 10.1016/j.cpc.2006.03.007
  • K. Igarashi, K. Koumoto, and H. Yanagida, Curie point of perovskites-type oxides containing bivalent ions of the 4th period in the B-site. J. Mater. Sci 22 (1987), pp. 2828–2832. doi: 10.1007/BF01086478
  • Q. Mahmood, M. Hassan, M.A. Faridi, B. Sabar, G. Murtaza, and A. mahmood, The study of electronic, elastic, magnetic and optical response of Zn1-xTixY (Y = S, Se) through mBJ potential. J. Current. Appl. Phys 16 (2016), pp. 549–561. doi: 10.1016/j.cap.2016.03.002
  • B. Sabir, G. Murtaza, R.M. Arif Khalil, and Q. Mahmood, First principle study of electronic, mechanical, optical and thermoelectric properties of CsMO3 (M = Ta, Nb) compounds for optoelectronic devices. J. Mol. Graph. Model 86 (2018), pp. 19–26. doi: 10.1016/j.jmgm.2018.09.011
  • Q. Mahmood, A. Javed, G. Murtaza, and S.M. Alay-e-Abbas, Study of the Zn0.75M0.25Te (M = Fe, Co, Ni) diluted magnetic semiconductor system by first principles approach. Mater.Chem. Phys 162 (2015), pp. 831–838. doi: 10.1016/j.matchemphys.2015.07.010
  • M. Sajjad, H.X. Zhang, N.A. Noor, S.M. Alay-e-Abbas, A. Shaukat, and Q. Mahmood, Study of half-metallic ferromagnetism in V-doped CdTe alloys by using first-principles calculations. J. Magn. Magn. Mater 343 (2013), pp. 177–183. doi: 10.1016/j.jmmm.2013.04.045
  • S.M. Ramay, M. Hassan, Q. Mahmood, and A. Mahmood, The study of electronic, magnetic, magneto-optical and thermoelectric properties of XCr2O4 (X = Zn, Cd) through modified Becke and Johnson potential scheme (mBJ). Current Appl. Phys 17 (2017), pp. 1038–1045. doi: 10.1016/j.cap.2017.04.011
  • X. Wang, Z. Cheng, J. Wang, and G. Liu, A full spectrum of spintronic properties demonstrated by a C1b-type Heusler compound Mn2Sn subjected to strain engineering. J. Mater. Chem. C 4 (2016), pp. 8535–8544. doi: 10.1039/C6TC02526A
  • M. Sajjad, S. Manzoor, H.X. Zhang, N.A. Noor, S.M. Alay-e-Abbas, A. Shaukat, and R. Khenata, The half-metallic ferromagnetism character in Be1-xVxY (Y = Se and Te) alloys: An ab-initio study. J. Magn. Magn. Mater 379 (2015), pp. 63–73. doi: 10.1016/j.jmmm.2014.11.004
  • H.S. Saini, M. Singh, A.H. Reshak, and M.K. Kashyap, Variation of half metallicity and magnetism of Cd1-xCrxZ (Z = S, Se and Te) DMS compounds on reducing dilute limit. J. Magn. Magn. Mater 331 (2013), pp. 1–6. doi: 10.1016/j.jmmm.2012.10.044
  • A. Walsh, S.H. Wai, Y. Yan, M.M. Al-Jassim, and J.A. Turner, Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: density-functional theory calculations. Phys. Rev. B 76 (2007), pp. 165119. doi: 10.1103/PhysRevB.76.165119
  • H.C. Choi, J.H. Shim, and B.I. Min, Electronic structures and magnetic properties of spinel ZnMn2O4 under high pressure. Phys. Rev. B 74 (2006), pp. 172103. doi: 10.1103/PhysRevB.74.172103
  • A. Kumar, C.J. Fennie, and K.M. Rabe, Spin-lattice coupling and phonon dispersion of CdCr2O4 from first principles. Phys. Rev. B 86 (2012), pp. 184429. doi: 10.1103/PhysRevB.86.184429
  • C. Kant, J. Deisenhofer, V. Tsurkan, and A. Loidl, Magnetic susceptibility of the frustrated spinels ZnCr2O4, MgCr2O4 and CdCr2O4. J. Phys: Conf. Seri 200 (2010), pp. 032032.
  • Q. Mahmood, A. Laref, and B.U. Haq, Ab-initio study of electronic, magnetic and thermoelectric behaviors of LiV2O4 and LiCr2O4 using modified Becke-Johson (mBJ) potential Physica B. Condensed Matter 537 (2018), pp. 329–335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.