109
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

On the use of autocorrelation functions, permeability tensors, and computed tomography to characterise the anisotropy of diesel particulate filter materials

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 2802-2835 | Received 29 Aug 2019, Accepted 02 Jul 2020, Published online: 03 Aug 2020

References

  • B. Sander, An Introduction to the Study of Fabrics of Geological Bodies, Pergamon, Oxford, 1970, p. 641
  • A.M. Gokhale, Quantitative characterization and representation of global microstructural geometry, in ASM Handbook Volume 9: Metallography and Microstructures, G.V. Voort, ed., ASM International, Materials Park, 2004.
  • A.M. Parfitt, M.K. Drezner, F.H. Glorieux, J.A. Kanis, H. Malluche, P.J. Meunier, S.M. Ott and R.R. Recker, Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committee. J. Bone Miner. Res. 2 (1987), pp. 595–610. doi: 10.1002/jbmr.5650020617
  • W.J. Whitehouse, The quantitative morphology of anisotropic trabecular bone. J. Microsc. 101 (1974), pp. 153–168. doi: 10.1111/j.1365-2818.1974.tb03878.x
  • M.Y.M. Chiang, X. Wang, F.A. Landis, J. Dunkers and C.R. Snyder, Quantifying the directional parameter of structural anisotropy in porous media. Tissue Eng. 12 (2006), pp. 1597–1606. doi: 10.1089/ten.2006.12.1597
  • P. Varga and P.K. Zysset, Sampling sphere orientation distribution: An efficient method to quantify trabecular bone fabric on grayscale images. Med. Image Anal. 13 (2009), pp. 530–541. doi: 10.1016/j.media.2009.02.007
  • A. Odgaard, E.B. Jensen and H.J.G. Gundersen, Estimation of structural anisotropy based on volume orientation. A new concept. J. Microsc. 157 (1990), pp. 149–162. doi: 10.1111/j.1365-2818.1990.tb02955.x
  • M.Y.M. Chiang, F.A. Landis, X. Wang, J.R. Smith, M.T. Cicerone, J. Dunkers and Y. Luo, Local thickness and anisotropy approaches to characterize pore size distribution of three-dimensional porous networks. Tissue Eng. – Part C: Methods 15 (2009), pp. 65–76. doi: 10.1089/ten.tec.2008.0298
  • L.M. Cruz-Orive, L.M. Karlsson and F. Wainschtein, Characterizing anisotropy: A new concept. Micron Microsc. Acta 23 (1992), pp. 75–76. doi: 10.1016/0739-6260(92)90076-P
  • A. Odgaard, J. Kabel, B. van Rietbergen, M. Dalstra and R. Huiskes, Fabric and elastic principal directions of cancellous bone are closely related. J. Biomech. 30 (1997), pp. 487–495. doi: 10.1016/S0021-9290(96)00177-7
  • J. Millard, P. Augat, T.M. Link, M. Kothari, D.C. Newitt, H.K. Genant and S. Majumdar, Power spectral analysis of vertebral trabecular bone structure from radiographs: orientation dependence and correlation with bone mineral density and mechanical properties. Calcif. Tissue Int. 63 (1998), pp. 482–489. doi: 10.1007/s002239900562
  • Y. Xiang, V.R. Yingling, R. Malique, C. Yang Li, M.B. Schaffler and T. Raphan, Comparative assessment of bone mass and structure using texture-based and histomorphometric analyses. Bone 40 (2007), pp. 544–552. doi: 10.1016/j.bone.2006.08.015
  • P.K. Saha and F.W. Wehrli, A robust method for measuring trabecular bone orientation anisotropy at in vivo resolution using tensor scale. Pattern Recognit. 37 (2004), pp. 1935–1944. doi: 10.1016/j.patcog.2003.12.019
  • M. Rotter, A. Berg, H. Langenberger, S. Grampp, H. Imhof and E. Moser, Autocorrelation analysis of bone structure. J. Magn. Reson. Imaging 14 (2001), pp. 87–93. doi: 10.1002/jmri.1156
  • M. Wald, B. Vasilic, P.K. Saha, and F.W. Wehrli, Study of trabecular bone microstructure using spatial autocorrelation analysis, Proc. SPIE, 5746 (2005), pp. 291–302. doi: 10.1117/12.596133
  • M. Faessel and D. Jeulin, Segmentation of 3D microtomographic images of granular materials with the stochastic watershed. J. Microsc. 239 (2010), pp. 17–31. doi: 10.1111/j.1365-2818.2009.03349.x
  • Y. Jiao, F.H. Stillinger and S. Torquato, Modeling heterogeneous materials via two-point correlation functions: Basic principles. Phys. Rev. E 76 (2007), pp. 031110. doi: 10.1103/PhysRevE.76.031110
  • F.W. Wehrli, H. Kwon Song, P.K. Saha, and A.C. Wright, Quantitative MRI for the assessment of bone structure and function, NMR Biomed. (2006), pp. 731–764. doi: 10.1002/nbm.1066
  • M.J. Wald, B. Vasilic, P.K. Saha and F.W. Wehrli, Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging. Med. Phys. 34 (2007), pp. 1110–1120. doi: 10.1118/1.2437281
  • J. Adler, Ceramic diesel particulate filters. Int. J. Appl. Ceram. Technol. 2 (2005), pp. 429–439. doi: 10.1111/j.1744-7402.2005.02044.x
  • G. Bruno, A.M. Efremov, C. An and S. Nickerson, Not All microcracks are Born equal: thermal vs. mechanical Microcracking in porous ceramics. Adv. Bioceram. Porous Ceram. IV 32 (2011).
  • Y. Kasai, K. Kumazawa, and W. Kotani, Cordierite ceramic filter and method of producing the same, E. P. Office ed., 1994.
  • D. Munroe Beall, G.A. Merkel, and M.J. Murtagh, Cordierite porous ceramic honeycomb articles with delayed microcrack evolution, U. S. Patent ed., Corning Incorporated, USA, 2015.
  • C. Bubeck, Direction dependent mechanical properties of extruded cordierite honeycombs. J. Eur. Ceram. Soc. 29 (2009), pp. 3113–3119. doi: 10.1016/j.jeurceramsoc.2009.06.005
  • G. Bruno, A.M. Efremov, B. Clausen, A.M. Balagurov, V.N. Simkin, B.R. Wheaton, J.E. Webb and D.W. Brown, On the stress-free lattice expansion of porous cordierite. Acta Mater. 58 (2010), pp. 1994–2003. doi: 10.1016/j.actamat.2009.11.042
  • A. Shyam, E. Lara-Curzio, A. Pandey, T.R. Watkins, K.L. More and T. Ohji, The thermal expansion, Elastic and Fracture properties of porous cordierite at Elevated temperatures. J. Am. Ceram. Soc. 95 (2012), pp. 1682–1691. doi: 10.1111/j.1551-2916.2012.05125.x
  • T. Gordon, A. Shyam and E. Lara-Curzio, The Relationship between Microstructure and Fracture toughness for Fibrous materials for Diesel Particulate filters. J. Am. Ceram. Soc. 93 (2010), pp. 1120–1126. doi: 10.1111/j.1551-2916.2009.03524.x
  • A. Lichtner, D. Roussel, D. Jauffrès, C.L. Martin, R.K. Bordia, and G. Franks, Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics, 99 (2016).
  • A. Kupsch, A. Lange, M.P. Hentschel, Y. Onel, T. Wolk, A. Staude, K. Ehrig, B.R. Müller and G. Bruno, Evaluating porosity in cordierite diesel particulate filter materials, part 1 – X-ray refraction. J. Ceram. Sci. Technol. 4 (2013), pp. 196–176.
  • Y. Onel, A. Lange, A. Staude, K. Ehrig, A. Kupsch, M.P. Hentschel, T. Wolk, B.R. Müller and G. Bruno, Evaluating porosity in cordierite Diesel Particulate filter materials, part 2 Statistical analysis of computed tomography data. J. Ceram. Sci. Technol. 5 (2013), pp. 13–22.
  • A. Kupsch, B.R. Müller, A. Lange and G. Bruno, Microstructure characterisation of ceramics via 2D and 3D X-ray refraction techniques. J. Eur. Ceram. Soc. 37 (2017), pp. 1879–1889. doi: 10.1016/j.jeurceramsoc.2016.12.031
  • S.-H. Leigh and C.C. Berndt, Modelling of elastic constants of plasma spray deposits with ellipsoid-shaped voids. Acta Mater. 47 (1999), pp. 1575–1586. doi: 10.1016/S1359-6454(99)00019-1
  • A.P. Roberts and E.J. Garboczi, Elastic properties of model porous ceramics. J. Am. Ceram. Soc. 83 (2000), pp. 3041–3048. doi: 10.1111/j.1151-2916.2000.tb01680.x
  • K. Schmidt and J. Becker, Generating 3D model of microporous ceramics. Adv. Eng. Mater. 15 (2013), pp. 40–45. doi: 10.1002/adem.201200097
  • T.P. de Carvalho, H.P. Morvan, D.M. Hargreaves, H. Oun and A. Kennedy, Pore-Scale numerical Investigation of pressure drop Behaviour across open-cell Metal Foams. Transp. Porous Media 117 (2017), pp. 311–336. doi: 10.1007/s11242-017-0835-y
  • M. Masoudi, A. Heibel, and P.M. Then, Predicting Pressure Drop of Wall-Flow Diesel Particulate Filters – Theory and Experiment, 2000.
  • W. Görner, M.P. Hentschel, B.R. Müller, H. Riesemeier, M. Krumrey, G. Ulm, W. Diete, U. Klein and R. Frahm, BAMline: the first hard X-ray beamline at BESSY II. Nucl. Instrum. Methods Phys. Res., Sect. A 467–468 (2001), pp. 703–706. doi: 10.1016/S0168-9002(01)00466-1
  • A. Rack, S. Zabler, B.R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel and W. Görner, High resolution synchrotron-based radiography and tomography using hard X-rays at the BAMline (BESSY II). Nucl. Instrum. Methods Phys. Res., Sect. A 586 (2008), pp. 327–344. doi: 10.1016/j.nima.2007.11.020
  • A. Lange, M.P. Hentschel, A. kupsch and B.R. Müller, Numerical correction of X-ray detector backlighting. Int. J. Mater. Res. 103 (2012). doi: 10.3139/146.110659
  • A. Kupsch, M.P. Hentschel, A. Lange and B.R. Müller, Einfaches Korrigieren des Hinterleuchtens von röntgendetektoren. Mater. Test. 55 (2013). doi: 10.3139/120.110478
  • C.J. Thissen and M.T. Brandon, An autocorrelation method for three-dimensional strain analysis. J. Struct. Geol. 81 (2015), pp. 135–154. doi: 10.1016/j.jsg.2015.09.001
  • D. Bernard, O. Guillon, N. Combaret and E. Plougonven, Constrained sintering of glass films: Microstructure evolution assessed through synchrotron computed microtomography. Acta Mater. 59 (2011), pp. 6228–6238. doi: 10.1016/j.actamat.2011.06.022
  • R.P. Heilbronner, The autocorrelation function: an image processing tool for fabric analysis. Tectonophysics 212 (1992), pp. 351–370. doi: 10.1016/0040-1951(92)90300-U
  • A.Z. Zinchenko, Algorithm for random close packing of spheres with periodic boundary conditions. J. Comput. Phys. 114 (1994), pp. 298–307. doi: 10.1006/jcph.1994.1168
  • R. Heilbronner and S. Barrett, Image Analysis in Earth Sciences. Microstructures and Textures of Earth Materials, Springer-Verlag, Berlin, 2014.
  • M. Frigo, and S.G. Johnson, The Design and Implementation of FFTW3, Proc. IEEE 93 (2005), pp. 216-231. doi: 10.1109/JPROC.2004.840301
  • H. Darcy, Les fontaines publiques de la ville de Dijon, Victor Dalmont, Libraire des Corps imperiaux des ponts et chaussées et des mines, 1856.
  • S. Whitaker, The Method of Volume Averaging, Theory and Applications of Transport in Porous Media, 1999.
  • D. Bernard, Ø Nielsen, L. Salvo and P. Cloetens, Permeability assessment by 3D interdendritic flow simulations on microtomography mappings of Al–Cu alloys. Mater. Sci. Eng. A 392 (2005), pp. 112–120. doi: 10.1016/j.msea.2004.09.004
  • D. Bernard, Using the volume averaging technique to perform the first change of scale for natural random porous media, in Advanced Methods for Groundwater Pollution Control, G. Gambolati, G. Verri, eds., Springer Vienna, Vienna, 1995. pp. 9–24.
  • F. Xiao and X. Yin, Geometry models of porous media based on Voronoi tessellations and their porosity–permeability relations. Comput. Math. Appl. 72 (2016), pp. 328–348. doi: 10.1016/j.camwa.2015.09.009
  • J. Hommel, E. Coltman and H. Class, Porosity–permeability relations for Evolving pore space: A review with a focus on (Bio-)geochemically altered porous media. Transp. Porous Media 124 (2018), pp. 589–629. doi: 10.1007/s11242-018-1086-2
  • M. Sato, K. Panaghi, N. Takadai and M. Takeda, Effect of Bedding Planes on the permeability and Diffusivity anisotropies of Berea sandstone. Transp. Porous Media 127 (2019), pp. 587–603. doi: 10.1007/s11242-018-1214-z
  • G. Bruno and S. Vogel, Calculation of the average coefficient of thermal expansion in Oriented cordierite Polycrystals. J. Am. Ceram. Soc. 91 (2008), pp. 2646–2652. doi: 10.1111/j.1551-2916.2008.02485.x
  • G. Bruno and S.C. Vogel, Simultaneous determination of high-temperature crystal structure and texture of synthetic porous cordierite. J. Appl. Crystallogr. 50 (2017), pp. 749–762. doi: 10.1107/S160057671700406X
  • G. Bruno, A.M. Efremov, B.R. Wheaton and J.E. Webb, Microcrack orientation in porous aluminum titanate. Acta Mater. 58 (2010), pp. 6649–6655. doi: 10.1016/j.actamat.2010.08.027
  • G. Bruno, A.M. Efremov, A.N. Levandovskiy, I. Pozdnyakova, D.J. Hughes and B. Clausen, Thermal and mechanical Response of industrial porous ceramics. Mater. Sci. Forum 652 (2010), pp. 191–196. doi: 10.4028/www.scientific.net/MSF.652.191
  • G. Bruno, A.M. Efremov, C.P. An, B.R. Wheaton and D.J. Hughes, Connecting the macro and microstrain responses in technical porous ceramics. part II: microcracking. J. Mater. Sci. 47 (2012), pp. 3674–3689. doi: 10.1007/s10853-011-6216-y
  • C. Lin, Microgeometry I: autocorrelation and rock microstructure. J. Int. Assoc. Math. Geol. 14 (1982), pp. 343–360. doi: 10.1007/BF01032595

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.