364
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Influence of precipitates on basal dislocation slip and twinning in AZ91 micro-pillars

ORCID Icon, , &
Pages 2949-2971 | Received 12 Jan 2020, Accepted 20 Jul 2020, Published online: 16 Aug 2020

References

  • J.F. Nie, Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 43(11) (2012), pp. 3891–3939. doi: 10.1007/s11661-012-1217-2
  • A. Kelly and R.B. Nicholson, Precipitation Hardening, Pergamon Press, Oxford, 1963.
  • M.E. Fine, Precipitation hardening of aluminum alloys. Metall. Trans. A 6 (1975), pp. 625–630. doi: 10.1007/BF02672283
  • N.Q. Chinh, J. Lendvai, D.H. Ping, and K. Hono, The effect of Cu on mechanical and precipitation properties of Al–Zn–Mg alloys. J. Alloys Compd. 378(1-2) (2004), pp. 52–60. doi: 10.1016/j.jallcom.2003.11.175
  • A.F. Crawley and K.S. Milliken, Precipitate morphology and orientation relationships in an aged Mg-9% Al-1%Zn-0.3% Mn alloy. Acta Metall. 22 (1974), pp. 557–562. doi: 10.1016/0001-6160(74)90152-7
  • S. Celotto, TEM study of continuous precipitation in Mg-9%Al-1%Zn alloy. Acta Mater. 48 (2000), pp. 1775–1787. doi: 10.1016/S1359-6454(00)00004-5
  • A.F. Crawley and B. Lagowski, Effect of two-step aging on the precipitate structure in magnesium alloy AZ91. Metall. Trans. 5 (1974), pp. 949–951. doi: 10.1007/BF02643153
  • C. Lv, T. Liu, D. Liu, S. Jiang, and W. Zeng, Effect of heat treatment on tension–compression yield asymmetry of AZ80 magnesium alloy. Mater. Des. 33 (2012), pp. 529–533. doi: 10.1016/j.matdes.2011.04.060
  • J. Jain, P. Cizek, W.J. Poole, and M.R. Barnett, Precipitate characteristics and their effect on the prismatic-slip-dominated deformation behaviour of an Mg–6 Zn alloy. Acta Mater. 61(11) (2013), pp. 4091–4102. doi: 10.1016/j.actamat.2013.03.033
  • Y.Z. Du, X.G. Qiao, M.Y. Zheng, D.B. Wang, K. Wu, and I.S. Golovin, Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 mass%Zn alloys. Mater. Des. 98 (2016), pp. 285–293. doi: 10.1016/j.matdes.2016.03.025
  • Y.Q. Chi, X.H. Zhou, X.G. Qiao, H.G. Brokmeier, and M.Y. Zheng, Tension-compression asymmetry of extruded Mg-Gd-Y-Zr alloy with a bimodal microstructure studied by in-situ synchrotron diffraction. Mater. Des. 170 (2019), pp. 107705. doi: 10.1016/j.matdes.2019.107705
  • Z. Zhang, X. Liu, Z. Wang, Q. Le, W. Hu, L. Bao, and J. Cui, Effects of phase composition and content on the microstructures and mechanical properties of high strength Mg–Y–Zn–Zr alloys. Mater. Des. 88 (2015), pp. 915–923. doi: 10.1016/j.matdes.2015.09.087
  • J.D. Robson, N. Stanford, and M.R. Barnett, Effect of precipitate shape on slip and twinning in magnesium alloys. Acta Mater. 59(5) (2011), pp. 1945–1956. doi: 10.1016/j.actamat.2010.11.060
  • J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48(8) (2003), pp. 1009–1015. doi: 10.1016/S1359-6462(02)00497-9
  • N. Stanford, J. Geng, Y.B. Chun, C.H.J. Davies, J.F. Nie, and M.R. Barnett, Effect of plate-shaped particle distributions on the deformation behaviour of magnesium alloy AZ91 in tension and compression. Acta Mater. 60(1) (2012), pp. 218–228. doi: 10.1016/j.actamat.2011.10.001
  • J. Wang and N. Stanford, Investigation of precipitate hardening of slip and twinning in Mg5%Zn by micropillar compression. Acta Mater. 100 (2015), pp. 53–63. doi: 10.1016/j.actamat.2015.08.012
  • M.A. Gharghouri, G.C. Weatherly, and J.D. Embury, The interaction of twins and precipitates in a Mg-7.7 at.% Al alloy. Philos. Mag. A 78(5) (1998), pp. 1137–1149. doi: 10.1080/01418619808239980
  • S.R. Agnew, R.P. Mulay, F.J. Polesak, C.A. Calhoun, J.J. Bhattacharyya, and B. Clausen, In situ neutron diffraction and polycrystal plasticity modeling of a Mg–Y–Nd–Zr alloy: effects of precipitation on individual deformation mechanisms. Acta Mater. 61(10) (2013), pp. 3769–3780. doi: 10.1016/j.actamat.2013.03.010
  • J.D. Robson, N. Stanford, and M.R. Barnett, Effect of particles in promoting twin nucleation in a Mg–5wt.% Zn alloy. Scr. Mater. 63(8) (2010), pp. 823–826. doi: 10.1016/j.scriptamat.2010.06.026
  • N. Stanford, A.S. Taylor, P. Cizek, F. Siska, M. Ramajayam, and M.R. Barnett, Twinning in magnesium-based lamellar microstructures. Scr. Mater. 67(7-8) (2012), pp. 704–707. doi: 10.1016/j.scriptamat.2012.06.035
  • N. Stanford and M.R. Barnett, Effect of particles on the formation of deformation twins in a magnesium-based alloy. Materi. Sci. Eng. A 516(1-2) (2009), pp. 226–234. doi: 10.1016/j.msea.2009.04.001
  • S.R. Kada, P.A. Lynch, J.A. Kimpton, and M.R. Barnett, In-situ X-ray diffraction studies of slip and twinning in the presence of precipitates in AZ91 alloy. Acta Mater. 119 (2016), pp. 145–156. doi: 10.1016/j.actamat.2016.08.022
  • M.D. Uchic and D.M. Dimiduk, A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng. A 400–401 (2005), pp. 268–278. doi: 10.1016/j.msea.2005.03.082
  • J.R. Greer and J.T.M. De Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6) (2011), pp. 654–724. doi: 10.1016/j.pmatsci.2011.01.005
  • C.A. Volkert and E.T. Lilleodden, Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86(33-35) (2006), pp. 5567–5579. doi: 10.1080/14786430600567739
  • J.-Y. Kim and J.R. Greer, Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57(17) (2009), pp. 5245–5253. doi: 10.1016/j.actamat.2009.07.027
  • Q. Sun, Q. Guo, X. Yao, L. Xiao, J.R. Greer, and J. Sun, Size effects in strength and plasticity of single-crystalline titanium micropillars with prismatic slip orientation. Scr. Mater. 65(6) (2011), pp. 473–476. doi: 10.1016/j.scriptamat.2011.05.033
  • Q. Yu, Z.W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma, Strong crystal size effect on deformation twinning. Nature 463(7279) (2010), pp. 335–338. doi: 10.1038/nature08692
  • Y. Liu, N. Li, M. Arul Kumar, S. Pathak, J. Wang, R.J. McCabe, N.A. Mara, and C.N. Tomé, Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars. Acta Mater. 135 (2017), pp. 411–421. doi: 10.1016/j.actamat.2017.06.008
  • G.-D. Sim, G. Kim, S. Lavenstein, M.H. Hamza, H. Fan, and J.A. El-Awady, Anomalous hardening in magnesium driven by a size-dependent transition in deformation modes. Acta Mater. 144 (2018), pp. 11–20. doi: 10.1016/j.actamat.2017.10.033
  • J.B. Clark, Age hardening in a Mg- 9 wt% Al alloys. Acta Metall. 16 (1968), pp. 141–152. doi: 10.1016/0001-6160(68)90109-0
  • K.N. Braszczyńska-Malik, Discontinuous and continuous precipitation in magnesium–aluminium type alloys. J. Alloys Compd. 477(1-2) (2009), pp. 870–876. doi: 10.1016/j.jallcom.2008.11.008
  • A. Kelly and R.B. Nicholson, Strengthening Methods in Crystals, Elsevier Publishing Company, Amsterdam, NY, 1971.
  • R.L. Zeng, Precipitation hardening in AZ91 magnesium alloy, Ph.D., University of Birmingham, 2013.
  • S.Q. Zhu and S.P. Ringer, On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys. Acta Mater. 144 (2018), pp. 365–375. doi: 10.1016/j.actamat.2017.11.004
  • S. Morozumi, M. Kikuchi, and H. Yoshinaga, Electron microscope observation in and around {1102} twins in magnesium. Trans. Jpn. Inst. Met. 17 (1976), pp. 158–164. doi: 10.2320/matertrans1960.17.158
  • B. Li, P.F. Yan, M.L. Sui, and E. Ma, Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg. Acta Mater. 58(1) (2010), pp. 173–179. doi: 10.1016/j.actamat.2009.08.066
  • A. Akhtar and E. Teghtsoonian, Solid solution strengthening of magnesium single crystals—I alloying behaviour in basal slip. Acta Metall. 17 (1969), pp. 1339–1349. doi: 10.1016/0001-6160(69)90151-5
  • J.Y. Wang, N. Li, R. Alizadeh, M.A. Monclús, Y.W. Cui, J.M. Molina-Aldareguía, and J. Llorca, Effect of solute content and temperature on the deformation mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys. Acta Mater. 170 (2019), pp. 155–165. doi: 10.1016/j.actamat.2019.03.027
  • C.R. Hutchinson, J.F. Nie, and S. Gorsse, Modeling the precipitation Processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 Alloy. Metall. Mater. Trans. A 36 (2005), pp. 2093–2105. doi: 10.1007/s11661-005-0330-x
  • R.M. Wang, A. Eliezer, and E. Gutman, Microstructures and dislocations in the stressed AZ91D magnesium alloys. Mater. Sci. Eng., A 344 (2002), pp. 279–287. doi: 10.1016/S0921-5093(02)00413-6
  • A. Vaid, J. Guénolé, A. Prakash, S. Korte-Kerzel, and E. Bitzek, Atomistic simulations of basal dislocations in Mg interacting with Mg17Al12 precipitates. Materialia 7 (2019), pp. 100355. doi: 10.1016/j.mtla.2019.100355
  • C.W. Chung, Microstructure and mechanical properties of ECAP processed AZ91 and AZ80 magnesium alloys, Ph.D., The University of Auckland, 2010.
  • P. Bate, W.T. Roberts, and D.V. Wilson, The plastic anisotropy of two-phase aluminium alloys—I. Anisotropy in unidirectional deformation. Acta Metall. 29(11) (1981), pp. 1797–1814. doi: 10.1016/0001-6160(81)90106-1
  • L.M. Brown and W.M. Stobbs, The work-hardening of copper-silica: I. A model based on Internal stresses, with no plastic relaxation. Philos. Mag. 23(185) (1971), pp. 1185–1199. doi: 10.1080/14786437108217405
  • L.M. Brown and W.M. Stobbs, The work-hardening of copper-silica: II the role of plastic relaxation. Philos. Mag. 23(185) (1971), pp. 1201–1233. doi: 10.1080/14786437108217406
  • J.D. Robson, The effect of internal stresses due to precipitates on twin growth in magnesium. Acta Mater. 121 (2016), pp. 277–287. doi: 10.1016/j.actamat.2016.09.022
  • C. Liu, P. Shanthraj, J.D. Robson, M. Diehl, S. Dong, J. Dong, W. Ding, and D. Raabe, On the interaction of precipitates and tensile twins in magnesium alloys. Acta Mater. 178 (2019), pp. 146–162. doi: 10.1016/j.actamat.2019.07.046
  • H. Fan, Y. Zhu, and Q. Wang, Effect of precipitate orientation on the twinning deformation in magnesium alloys. Comput. Mater. Sci. 155 (2018), pp. 378–382. doi: 10.1016/j.commatsci.2018.09.012
  • H. Fan, Y. Zhu, J.A. El-Awady, and D. Raabe, Precipitation hardening effects on extension twinning in magnesium alloys. Int. J. Plast. 106 (2018), pp. 186–202. doi: 10.1016/j.ijplas.2018.03.008
  • J. Wang, S.K. Yadav, J.P. Hirth, C.N. Tomé, and I.J. Beyerlein, Pure-Shuffle nucleation of deformation twins in Hexagonal-close-packed metals. Mater. Res. Lett. 1(3) (2013), pp. 126–132. doi: 10.1080/21663831.2013.792019
  • J. Wang, I.J. Beyerlein, and C.N. Tomé, An atomic and probabilistic perspective on twin nucleation in Mg. Scr. Mater. 63(7) (2010), pp. 741–746. doi: 10.1016/j.scriptamat.2010.01.047
  • I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tomé, Statistical analyses of deformation twinning in magnesium. Philos. Mag. 90(16) (2010), pp. 2161–2190. doi: 10.1080/14786431003630835
  • J. Jeong, M. Alfreider, R. Konetschnik, D. Kiener, and S.H. Oh, In-situ TEM observation of {10–12} twin-dominated deformation of Mg pillars: twinning mechanism, size effects and rate dependency. Acta Mater. 158 (2018), pp. 407–421. doi: 10.1016/j.actamat.2018.07.027
  • J.F. Stohr and J.P. Poirier, Etude en microscopie electronique du glissement pyramidal {1122} 〈1123〉 dans le magnesium. Philos. Mag. 25(6) (1972), pp. 1313–1329. doi: 10.1080/14786437208223856
  • F. Wang and S.R. Agnew, Dislocation transmutation by tension twinning in magnesium alloy AZ31. Int. J. Plast. 81 (2016), pp. 63–86. doi: 10.1016/j.ijplas.2016.01.012
  • M. Hyong Yoo and C.-T. Wei, Growth of deformation twins in zinc crystals. Philos. Mag. 14(129) (1966), pp. 573–587. doi: 10.1080/14786436608211952
  • F. Wang, C.D. Barrett, R.J. McCabe, H. El Kadiri, L. Capolungo, and S.R. Agnew, Dislocation induced twin growth and formation of basal stacking faults in {101¯2} twins in pure Mg. Acta Mater. 165 (2019), pp. 471–485. doi: 10.1016/j.actamat.2018.12.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.